Integral Geometry on Surfaces of Constant Negative Curvature
dc.contributor.author
dc.date.accessioned
2009-10-28T15:07:23Z
dc.date.available
2009-10-28T15:07:23Z
dc.date.created
1943
dc.identifier.citation
Santalo, L.A (1943). Integral Geometry on Surfaces of Constant Negative Curvature. Duke Mathematical Journal, 10 (4), 687-704. Duke University Press. All rights reserved. Used by permission of the publisher
dc.identifier.uri
dc.description.abstract
We use the expression Integral geometry in the sense given it by Blaschke in “Vorlesungen über Integrtüçeomelrie”. In a previous paper (“Integral formulas in Croflon style on the sphere and some inequalities referring to spherical curve” (1942), Duke Mathematical Journal, vol. 9, pp. 707) we generalized to the sphere many formulas of plane integral geometry and at the same time applied these to the demonstration of certain inequalities referring to spherical curves. The present paper considers analogous qüestions for surfaces of constant negative curvature and consequently for hyperbolic geometry
dc.description.uri
dc.format.mimetype
application/pdf
dc.language.iso
Inglés
dc.publisher
Duke University Press
dc.relation.ispartof
Duke Mathematical Journal, 1943, vol. 10, núm. 4, p. 687-704
dc.relation.ispartofseries
Publicacions
dc.rights
Tots els drets reservats
dc.subject
dc.title
Integral Geometry on Surfaces of Constant Negative Curvature
dc.type
Artículo
dc.rights.accessRights
info:eu-repo/semantics/openAccess