Geodesics in Gödel-Synge spaces
dc.contributor.author
dc.date.accessioned
2009-10-19T14:38:09Z
dc.date.available
2009-10-19T14:38:09Z
dc.date.created
1982
dc.identifier.citation
Santaló, L. (1982). Geodesics in Gödel-Synge spaces. Tensor N.S, 37, 173-178
dc.identifier.uri
dc.description.abstract
Our purpose is to study the geodesic lines in the form: ds2=dx2 + 2h(x4)dx1dx2 + g(x4)dx22 – dx23 – dx24, and to compare with the work of S. Chandrasekhar and J. P. Wright on geodesics in Gödel’s universe. We will give, first, an isometric embedding of the form ds2=dx2 + 2h(x4)dx1dx2 + g(x4)dx22 – dx23 – dx24 in a pseudo Euclidean space of 10 dimensions, from which some properties on closed time-like curves can be deduced. Finally, we give an isometric embedding in a 10-dimensional pseudo Euclidean space of Gödel’s space in cylindrical coordinates and deduce some consequences
dc.format.mimetype
application/pdf
dc.language.iso
English
dc.relation.ispartof
Tensor N.S, vol. 37, p. 173-178
dc.relation.ispartofseries
Publicacions
dc.rights
Tots els drets reservats
dc.subject
dc.title
Geodesics in Gödel-Synge spaces
dc.type
Article
dc.rights.accessRights
info:eu-repo/semantics/openAccess