On the Measure of sets of parallel linear subspace in affine space
dc.contributor.author
dc.date.accessioned
2009-07-28T10:44:32Z
dc.date.available
2009-07-28T10:44:32Z
dc.date.created
1962
dc.identifier.citation
Santaló, L. (1962). On the Measure of sets of parallel linear subspace in affine space. Canadian Journal of Mathematics, 14, 313-319
dc.identifier.issn
0008-414X
dc.identifier.uri
dc.description.abstract
Demostració d'un teorema relacionat amb la mesura dels conjunts del subespai lineal paral·lel a l’espai afí
The aim of this paper is to prove the following theorem: “in order that sets of elements H composed by q parallel linear subspaces of dimensions h1, h2… Hq, which transform transitively by the unimodular affine group ʮ have an invariant measure with respect to ʮ, it is necessary and sufficient that the dimensions hi be all equal, h1 = h2 = h3 = … = hq = h, and that q = n + 1 – h”
dc.format.mimetype
application/pdf
dc.language.iso
English
dc.publisher
Société mathématique du Canada
dc.relation.ispartof
Canadian Journal of Mathematics, 1962, vol. 14, p. 313-319, reprinted with permission from the Canadian Mathematical Society
dc.relation.ispartofseries
Publicacions
dc.rights
Tots els drets reservats
dc.subject
dc.title
On the Measure of sets of parallel linear subspace in affine space
dc.type
Article
dc.rights.accessRights
info:eu-repo/semantics/openAccess