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270 ADVANCED PROBLEMS AND SOLUTIONS [April,

The coérdinates of 4;, B;, C; (=1, 2) are easily found to be (7, s, £) where 7, s, ¢
are distinct permutations of 0, N\, u. Evidently all six points lie on the ellipse
whose areal equation is

S1=Mu(x2 + 92+ 22 — A2+ p)(vz + 20 + zy) = 0.
Moreover we have the equation of the Steiner ellipse*
Se=9yz+2x 4+ 2y = 0.
Thus :
Sp=— (A4 w2y + Muw — (A +.0)%(S2 — ku?),

where # =x-+vy-+2. Hence S, S; are homothetic and concentric with the centroid
G as their homothetic center.t To find the ratio of homothety, H, let .Sy divide
the line joining G to 4 in ratio m:n. We have

M =Mt O+ VT T
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and
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When A:p=1:2, then H=1//3.

We note that as the ratio X\ :u varies, the equation S; represents a system of
homothetic and concentric ellipses with the centroid G as their homothetic
center. Since the ratio A:u and u:\ are simultaneously treated in our solution,
we need only consider the ratio A:u in-the interval (—1, 1). Limiting cases
arise (i) when N:u=1, giving the maximum inscribed ellipse;} (ii) when A=0,
giving the minimum circumscribed ellipse (Steiner ellipse); and (iii) when
A:p=—1, giving the line at infinity. It is also of interest that for real values of
A and p, the system of ellipses fills the plane except for the interior of the maxi-
mum inscribed ellipse.

Also solved by L. M. Kelly and R. Goormaghtigh.

Rectifiable Plane Curves
4262 [1947, 418]. Proposed by L. A. Santalé, Rosario, Argentina

Let C be a rectifiable plane curve of length L, contained within a given circle
of radius R. Prove that there is a circle of radius p= R which cuts C in # points.
where

1 n = L/xR.
D. M. Y. Sommerville, Analytical Conics, London, 1924, p. 191.
D. M. Y. Sommerville, loc. cit., p. 205.
.M. Y.

.I.
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Sommerville, loc. cit., p. 181.
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In particular there is a line which cuts C in # points, where # satisfies (1). If p
<R, the inequality (1) must be replaced by

4Lp
" ——— -
7(R + p)?

See L. A. Santalé, A theorem and an inequality referring to rectifiable curves,
American Journal of Mathematics, 1941, p. 635.

2

Solution by the Proposer. Let (x, y) be the coérdinates of the variable center
of a circle of constant radius p. Let N=N(x, y) be the number of common points
of this circle and the curve C for each position of (x, ¥). Then the Proposer has
shown, in the paper already cited, that the following integral formula holds;

ff Ndxdy = 4Lp.

On the other hand, if p= R, the area covered by the points (x, ) which are cen-
ters of circles of radius p and which cut the given circle of radius R, has the
value '

w(p + R)?> — w(p — R)* = 4w Rp.
Consequently the mean value of N is
J[Ndxdy L
[fdxdy =R
As the mean value of a function is not greater than its maximum value, the in-
equality (1) is established.
If p <R, the area covered by the centers (x, y) of circles of radius p which cut

the given circle of radius R or are contained in its interior is m(p+ R)% Conse-
quently N=4Lp/m(p+R)? and inequality (2) holds.

W=

The Continuum Hypothesis

4263 [1947, 419]. Proposed by Howard Eves, Oregon State College, and Paul
Halmos, Syracuse University

Criticize the following alleged proof of the continuum hypothesis.
Let X be the set of all infinite sequences of 0’s and 1’s, and let E be an
arbitrary uncountable subset of X. Corresponding to any finite sequence,
ay * v, ak}, of 0’s and 1’s, write E(ay, * + -, ax) for the set of all sequences
xn} which belong to E and begin with {al, L, ak}. Since E=E(0)+E(1),
at least one of the two sets E(0) and E(1) is uncountable; write ;=0 or 1 ac-
cording as E(0) is or is not uncountable. Then, in either case, E(a;) is uncounta-
ble. If a; has already been defined for =1, - - -, k, so that E(a,, - * -, ax) is
uncountable, then write ax41=0 or 1 according as E(ay, - - + , az, 0) is or is not
uncountable. The resulting infinite sequence {al, as, ag, * - } has the property
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