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340 PROBLEMS AND SOLUTIONS [May,

I1. Solution by Irving Kaplansky, Harvard University
This is a special case of the problem treated in my note On a generalization

of the “Probléme des Rencontres” [1939, 159]. Putting n=13, a;=4, py= - - -
=p1=1, pu=pr=p13=0 in the formula obtained there, we get

EV(E* — 4E%)0| = E¥(E — 4)190! = f (— 4)1’(@)(52 — !
1

=0
for the number of arrangements.

II1. Experimential check by D. H. Browne, Buffalo, N. Y.

By a trial of several hundred deals, using a single close ruff and a lift cut be-
tween each deal and the next, I get an average of 54.59.

Also solved by E. P. Starke and the proposer.

ADVANCED PROBLEMS

Send all communications about Advanced Problems and Solutions to Otto Dunkel,
Washington University, St. Louis, Mo. All manuscripts should be typewritten, with double
spacing and with margins at least one inch wide.

Problems containing results believed to be new or extensions of old results are espe-
cially sought. The editorial work would be greatly facilitated, if, on sending in problems,
proposers would also enclose any solutions or information that will assist the editors in
checking the statements. In general, problems in well known text-books or results found
in readily accessible sources will not be proposed as problems for solution in this depart-
ment. In so far as possible, however, the editors will be glad to assist members of the Asso-
ciation in the solution of such problems.

PROBLEMS FOR SOLUTION

4036. Proposed by L. A. Santalé, Rosario, Argentina

Let Ci be an oval with a continuously varying radius of curvature R; at each
point of C; a normal of length R is drawn exteriorly giving points of a second
curve C; (which may not be convex); and let 4 be the area enclosed between the
two curves. From a chosen fixed point a vector is drawn parallel to the normal
at a point of C; and of length R for that point, thus giving as the point varies on
Ci a curve C; having the area 4; and length Ls. If L is the length of C; and 4,
is the area of Ci, show that

(a) 4 = 3A3, (b) L2L3 é 87TA1;
the equality in (b) is true only when C; is a circle.

4037. Proposed by Cezar Cosgnitd, Focsani, Roumania.
Integrate

(xm1 + gy — amy = 0;

calculate and examine the radius of curvature of the integral curves at the origin.
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4038. Proposed by V. Thébault, San Sebastidn, Spain

The point M is chosen arbitrarily on a bisector of angle 4 of the triangle
ABC, and let M’ be its isogonal conjugate with respect to ABC. Show that the
two circles each through M and M’ and tangent to the side BC are tangent also
to the circumcircle of 4 BC.

4039. Proposed by N. A. Court, University of Oklahoma

The circumcenter of a tetrahedron (7") and any point M are isogonal con-
jugates with respect to the tetrahedron formed by the centers of the four spheres
passing through M and the circumcircles of the faces of (7).

Correction of editorial errors in 3994 [1941, 273]. Proposed by C. E. Springer,
University of Oklahoma :

If

K
a1 = Qg9 = A33 = Z( >(” — )&=, J =0 (mod 3);

K
dl2=d23=ds1=z< >
i \J
K
013=032=021=Z<,>

show that the determinant

|ai;| = [(n — 13 + 1]%

(n — 1)E—3, j =1 (mod 3);

(1’2 - 1)K_iv ]

I

2 (mod 3);

SOLUTIONS

Symmetric Functions

3980 [1941, 69]. Proposed by Esther Szekeres, Budapest, Hungary

The symmetric polynomials yi, ys, - - -, ¥, in the variables x1, xs, - « -, %4
are of the degrees indicated by the subscripts, and are algebraically independent.
If f(x1, %2, - - -, x,) is any given polynomial symmetric in the x’s, show that it
can be expressed as a polynomial in the y’s.

Solution by the Proposer

Since the symmetric polynomial f(x1, xs, - - - , x,) can be expressed as a poly-
nomial in terms of the elementary symmetric functions oy, a3, - - - , 0, it suffices
to show that each o, can be expressed as a polynomial in the y,'s.

We may write

yk = (0 + gk(aly g, * C"k—l)y

where the second term in the right member is a polynomial in the indicated
arguments whose terms are of weights not exceeding k, or in other words it is
the sum of terms such as
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