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On geometry of numbers.

By L. A.. SANTAL\’O

(Received April 1, 1953)

1. Introduction. In a recent paper Tsuji [3] has given some
theorems which may be considered as a generalization to Fuchsian
groups of the classical theorems of Blichfeldt [1] and Minkowski in
the geometry of numbers. In both cases, however, the generalization
is restricted to circular domains.

The object of this paper is to carry this generalization further.
First, by considering more general groups than the Fuchsian groups;
second, by considering a kind of domains more general than the circular
domains.

2. A preliminary integral formula. Let $S$ be a space of
points in which operates a transitive group of transformations $G$. For
a point $P\in S$ and an element $s\in G$ we denote with $sP$ the transform
of $P$ by $s$ . The elements $s$ of $G$ with $sP_{0}=P_{0}$ for a given point $P_{0}$ of
$S$ form a subgroup $G_{0}$ of $G$ . Let $G_{1}$ be a simply-transitive subgroup
of $G$ . Then we have obviously $G_{1}G_{0}=G,$ $G_{1}\leftrightarrow G_{0}=\{e\}$ (unit group),
and we can identify $G_{1}$ with the homogeneous space $G/G_{0}$ or with the
space $S$ by assigning $x\in G_{1}$ to $xG_{0}\in G/G_{0}$ or to $xP_{0}\in S$. $G$ may be then
considered as operating on $G_{1}$ , as well as on $S$, in the following man-
ner. Let $s,$ $t\in G,$ $x\in G_{1}$ , then $sxt$ , properly an element of $G$, is
identified with the element of $G_{1}$ corresponding to $sxtG_{0}$ in $G/G_{0}$ . We
assume now $G_{1}$ to be locally compact and provide $G/G_{0}$ resp. $S$ with
the same topology as that of $G_{1}$ . We assume further that $G_{1}$ is
unimodular, i. e. that the left invariant measure of $G_{1}$ is also right
invariant; and that this measure is also invariant with respect to $G$,
so that we have $m(H)=m(sHt)$ for a point-set $H$ in $G_{1}$ and any $s,$ $t\in G$.
This may be symbolically written as follows ([4, 34]):

(2.1) $dx=dx^{-1}$ , $dx=d(sxt)$ for any $s,$ $t\in G$ ,

(2.2) $m(H)=\int_{G_{1}}\varphi(x)dx$ ,

where $dx$ denotes the element of volume of $G_{1}$ and $\varphi(x)$ the charac-
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teristic function of $H$. By the above identification of $G_{1}$ with $S,$ $(2.2)$

gives also the measure of a set $H$ in $S$ if we set $\varphi(x)=1$ if $xP_{0}\in H$

and $\varphi(x)=0$ otherwise. Throughout the paper we shall only consider
measurable sets.

Let $K_{J}$ be a set of $N$ fixed points $P_{i}(i=1,2,3,\ldots, N)$ of $S$. If we
set now $\varphi;(x)=1$ if $xP_{i}\in H$ and $\varphi_{i}(x)=0$ otherwise, according to (2.2)
and (2.1) we have

(2.3) $m(H)=\int_{G_{1}}\varphi_{i}(x)dx=\int_{G_{1}}\varphi_{i}(x^{-1})dx$

where $\varphi_{i}(x^{-1})=1$ if $P_{i}\in xH$ and $\varphi_{i}(x^{-1})=0$ otherwise.
Let $f(P_{i})$ be a function defined on the points $P_{i}$ . We have

(2.4)
$I=\int_{G1}\sum_{P_{i}\epsilon xH}f(P_{i})dx=\sum_{1}^{N}\int f(P_{i})\varphi_{i}(x^{-1})dx\dot{c}1$

$=\sum_{I}^{N}f(P_{i})\int_{G_{1}}\varphi_{i}(x^{-1})dx=m(H)\sum_{1}^{N}f(P_{i})$ .

In particular, if $f(P_{i})=1$ and $\nu(K_{0}\cap xH)$ denotes the number of
points $P_{i}$ which belong to $xH$, we have, [2],

(2.5) $\int_{c_{1}^{\nu}}(K_{0}\cap xH)dx=Nm(H)$ .

3. An analogue to Blichfeldt’s theorem. Let us suppose
that there exists a partition of $S$ into fundamental domains $D_{h}(h=$

$0,1,2,\ldots)$ and a discrete subgroup $F$ of $G(^{*})$ such that:
a) Each $D_{h}$ is the transform of $D_{0}$ by the transformation $x_{h}$ of $F$

($x_{0}=unit$ element of $F$ ). That is

(3.1) $D_{h}=x_{h}D_{0}$ , $x_{h}\in F$ .
b) Each $x_{h}eF$ transforms a fundamental domain $D_{k}$ into a funda-

mental domain $D_{l}$ , with $l\neq k$ if $h\neq 0$ .
c) The fundamental domains are measurable and $0<m(D_{h})=$

$ m(D_{0})<\infty$ .
Let $K_{0}$ be a set of $N$ points $P_{i}(i=1,2,\ldots,N)$ contained in $D_{0}$ and

let $f(P_{i})$ be a function defined on the points $P_{i}$ such that $f(x_{h}P_{i})=f(P_{i})$ .

$(^{*})$ Note that $F$ is not necessarily a subgroup of $G_{1}$ .
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Since $S$ is the sum of the sets $D_{h}$ and the space of the group $G_{1}$

coincides with $S$, the integral (2.4) can be written

(3.2)
$I=\int_{G1}\sum_{P_{i}\epsilon xH}f(P_{i})dx=\sum_{h}\int_{h}$$\sum_{P_{i}\epsilon xH,D}f(P_{i})dx$

.

By the change of variables $x^{\prime}=x_{h}^{-1}x$, having into account the in-
variance (2.1), we have

(3.3) $I=\sum_{h}\int\sum_{0}f(P_{i})dx=$$\sum_{h,D}\int_{0}\sum f(P_{i})dxDx_{h}^{-1}P_{i}exH$

and, by (2.4),

(3.4) $\int_{D_{0}}\sum_{hx_{h}^{-}}\sum_{1_{P_{i}\epsilon xH}}f(P_{i})dx=m(H)\sum_{1}^{N}f(P_{i})$ .

This means that if we draw on $S$ the lattice formed by all points
$x_{h}K_{0}(h=0,1,2,\ldots)$ and for each position $xH$ of $H$ with $x\in D_{0}$ , we carry
out the addition $\sum f(P_{i})$ over the lattice points contained in $xH$ (with
the assumption $f(x_{h}P_{i})=f(P_{i}))$ , the integral formula (3.4) holds.

Therefore, the mean value of the sum $\sum f(P_{i})(P_{i\in}xH)$ is equal to

(3.5) $ n\iota$ . $v.(\sum f(P_{i}))=_{m(D)}^{m(H_{0})}\sum_{1}^{N}f(P_{i})$

and we have
THEOREM 1. Let $S,$ $G,$ $G_{1},$ $F$ be the space and the groups already

spectfied. Given $N$ fixed points $P_{i}$ inside the fundamental domain $D_{0}$,
we consider the lattice of all points $x_{h}P_{i}(x_{h}\in F)$ and a function $f(P_{i})$

defined on the points $P_{i}$ such that $f(x_{h}P_{i})=f(P_{i})$ . Then, for every
measurable set $H$ of $S$ there are transforms $x^{\prime}H(x^{\prime}\in G_{1})$ for which the
sum $\sum f(P_{i})$ extended over the lattice points contained in $x^{\prime}H$ is not
less than the right hand side of (3.5) and transforms $x^{\prime\prime}H(x^{\prime\prime}\in G_{1})$ for
which that sum is not greater than the right hand side of (3.5).

If $f(P_{i})=1,$ $(3.5)$ gives that the mean value of the number of lattice
points contained in $H$ is $Nm(H)/m(D_{0})$ and the Theorem gives bounds
for the number of lattice points that suitable transforms of $H$ can
contain.

If $S$ is the euclidean space, $G$ the group of motions, $G_{1}$ the group
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of translations and $F$ the subgroup of translations which leaves un-
changed the lattice of points with integral coordinates, then Theorem
1 coincides with Blichfeldt’s theorem.

If $S$ is the unit circle $|z|<1$ of the complex plane, $G$ the group

of non-euclidean motions $(z^{\prime}=(bz+a)/(\overline{a}z+\overline{b})),$ $G_{1}$ the group of non $\cdot$

euclidean translations $(z^{f}=(z+a)/(1+\overline{a}z), |a|<1)$ and $F$ is a Fuchsian
group, then Theorem 1 gives the Theorem 5 of Tsuji [3] generalized
to domains not necessarily convex.

4. A lemma. With the same notations of $n^{o}3$ , let $H$ be a set
of points such that $m(H)>m(D_{0})$ . Let $D_{i}(i=1,2,\ldots)$ be the fundamental
domains which have common point with $H$ and let us consider the set
of points $\sum_{i}(D_{0}\cap x_{i^{-1}}H)$ . Since the measure is preserved by $x_{i}$ , having
into account (3.1), we have

$m(D_{0}\cap x_{i}^{-1}H)=m(x_{i}(D_{0}\cap x_{i^{-1}}H))=m(x_{i}D_{0}\cap H)=m(D_{i}\cap H)$

and therefore

$m(\sum_{i}(D_{0}\cap x_{i^{-1}}H))=\sum_{i}:m(D_{0}\cap x_{i^{-1}}H)=\sum_{i}m(D_{i}\cap H)=m(H)$

As a consequence, since $m(H)>m(D_{0})$ , the sets $D_{0}\cap x_{h}^{-1}H$ overlap,
that is, there is a point $P$ which belong to two sets $D_{0}\cap x_{i^{-1}}H$, say
$D_{0}\cap x_{1}^{-1}H,$ $D_{0}\cap x_{2^{\sim 1}}H$. Therefore $P$ belongs to $x_{1}^{-1}H$ and to $x_{2}^{-1}H$ and
since $x_{1}^{-1},$ $x_{2^{-1}}$ belong to $F$, we have the following

LEMMA. If $m(H)>m(D_{0})$ , then the equivalents of $H$ with respect
to $F$ overlap.

For the particular case of Fuchsian groups this lemma coincides
with Theorem 1 of Tsuji [3].

5. An analogue to Minkowski’s theorem. With the same
nomenclature as in $n^{o}3$ , let us now consider the case $N=1$ . That is,
given a fixed point $P_{0}$ in $D_{0}$ , we consider the point lattice $x_{h}P_{0}(x_{h}\in F)$ .

Given a domain $H$ which contains $P_{0}$ , we shall say that a domain
$H^{*}$ contained in $H$ is an m-domain of $H$ (with respect to the group $G$ )

if, for $x\in G,$ $yeG$ , the following two conditions are satisfied:

a) If $xP_{0}\in H^{*}$ , then $x^{-1}P_{0}\in H^{*}$ .
b) If $xP_{0}\in H^{*}$ and $yP_{0}\in H^{*}$ , then $xyP_{0}eH$ .
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Let us assume that $H$ admits an m.domain $H^{*}$ such that $m(H^{*})>$

$m(D_{0})$ . Then, by the lemma of $n^{o}4$ , the equivalent sets of $H^{*}$ with
respect to $F$ overlap. This means that there exists a point $P=xP_{0}$

which belongs to $H^{*}$ and to a transform, say $x_{1}H^{*}$ , of $H^{*}$ . That is,
we have $xP_{0}eH^{*},$ $xP_{0}\in x_{1}H^{*}$ , or

$xP_{0}eH^{*},$ $x_{1^{-1}}xP_{0}\in H^{*}$ .
Since $H^{*}$ is an m.domain of $H$, we have by a)

$xP_{0}eH^{*}$ , $(x_{1^{-1}}x)^{-1}P_{0}=x^{-1}x_{1}P_{0}\in H^{*}$

and by b)
$xx^{-1}x{}_{1}P_{0}=x_{1}P_{0}\in H$ .

Since $x_{1}P_{0}$ is a lattice point, we have the following
THEOREM 2. If the domain $H$ which contains the point $P_{0}$ possesses

an m.domain $H^{*}$ such that $m(H^{*})>m(D_{0})$ , then $H$ contains a lattice
point distinct from $P_{0}$ .

EXAMPLES. 1. Let $S$ be the ndimensional euclidean space, and let
now $G=G_{1}$ be the group of translations in it; let $F$ be the subgroup
which leaves unchanged the lattice of points with integral coordinates.
Let $P_{0}$ be the origin of coordinates and let $H$ be a convex domain with
center of symmetry at $P_{0}$. Then it is easy to see that the homothetic
domain of $H$ with center $P_{0}$ and $ratio\frac{1}{2}$ is an m.domain of $H$. More-

over, if $V$ denotes the volume of $H$, we have $m(H^{*})=V/2^{n}$ and $m(D_{0})$

$=1$ . Therefore, if $V>2^{\hslash}$ , then $H$ contains a lattice point distinct from
the origin and we have the classical theorem of Minkowski.

2. Let $S$ be the unit circle $|z|<1$ of the complex plane, $G$ the
group of non.euclidean $(n. e.)$ motions $(z^{\prime}=(bz+a)/(\overline{a}z+\overline{b}))$ and $F$ a
Fuchsian group. Let $P_{0}$ be the origin $z=0$ . Let $H$ be the disc $|z|\leq$

$\rho<1$ and let $H^{*}$ be the disc $|z|\leq\rho_{d}$ , where $\rho_{0}$ is related to $\rho$ by the
equation

$2\rho_{0}$

$\rho=\overline{1}+\rho_{0}^{2}$

According to the $n$ . $e$ . metric $ds=2|dz|/(1-|z|^{2})$ , the $n$ . $e$ . radius
of $H^{*}$ is one half of that of $H$. We want to prove that $H^{*}$ is an $m$ .
domain of $H$, that is, that the conditions a), b) are satisfied.
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a) Let $x$ be the n. e. motion $z^{\prime}=(bz+a)/(\overline{a}z+\overline{b})$ . Since $P_{0}$ is the
origin $z=0$ , the point $xP_{0}$ is the point $z^{\prime}=a/\overline{b}$ . The point $x^{-1}P_{0}$ is
$z^{\prime\prime}=-a/b$ and therefore if we assume $|z^{\prime}|=|a/b|\leq\rho_{0}$, we have
$|z|=|a/b|=|z^{\prime\prime}|\leq\rho_{0}$ .

b) Let $r$ be the n.e. length of $\rho$ and $\sigma$ the $n$ . $e$ . length of the
segment which unites $P_{0}(z=0)$ with the point $yP_{0}$ ; if we assume $yP_{0}\in H^{*}$ ,
then we have $\sigma\leq\gamma/2$ . Since the $n.e$. motions preserve the $n$ . $e$ . lengths,
the $n$ . $e$ . length of the segment (arc of geodesic) which unites the points
$xP_{0}$ and $xyP_{0}$ is equal to $\sigma$ . Therefore, from $xP_{0}\in H^{*}$ and $\sigma\leq r/2$ we
deduce $xyP_{0}\in H$.

Consequently $H^{*}$ is an m.domain of $H$ and Theorem 2 can be
applied. Having into account that, in this particular case, we have
$m(H)=4m(H^{*})+\pi^{-1}m^{2}(H^{*})$ , if $m(H)>4m(D_{0})+\pi^{-1}m^{2}(D_{0})$ , then $H$ con.
tains a lattice point distinct from $z=0$ , and we have the theorem 2 of
Tsuji [3].

Faculty of Sciences, University Eva Peron
Argentina.
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