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CAUCHY AND KUBOTA’s FORMULA
FOR CONVEX BODIES IN ELLIPTIC n-SPACE

Summary: The classical integral formulas de CAUCHY and KUBOTA of the theory of
convex bodies are extended to elliptic n-dimensional space. The CAUCHYs formu-
la takes the form (4.7) and that of KUBOTA takes the form (5.5).

1. Introduction

Let K, be a compact convex body in elliptic #n-dimensional space S”.
Let L, denote an r-plane (r-dimensional subspace) in S” which do not in-
tersect K, and let L), denote the (n—r—1)-plane dual of L,. The (r +1)-
planes L,,,[L,] through L, which mect K, determine in L}, a convex sct
KX, (projection of K, into L}, from L,). Let V., denote the (n—r—1)-
dimensional volume of Kj7,, and M* (=0, 1,...,n—r—2) the i-th integrals
of mean curvature of 9K, ;. In this paper we shall obtain some integral
formulas referring to V&, and M* from which, in particular, one can de-
duce the mean values of these magnitudes with respect to all r-planes L, ex-
terior to K,. These mean values gencralize to elliptic space the classical for-
mulas of Cauchy and Kubota for convex bodies in euclidean n-space (see [1],
pp. 48-49; (3], pp. 217-218).

For simplicity, we shall assume that 3K, is of class C* in order that
the integrals of mean curvature be well defined. However, using the relation
M;(3K,) =nW; . (K,) ([3], p. 224) and applying the theorem that any con-
vex hypersurface can be approximated by a sequence of analytic convex hy-
persurfaces, it follows that the obtained integral formulas can be expressed
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in terms of the quermassintegrale W; and therefore they hold for general
compact convex bodies in S”.

2. Some known formulas

For notations and details we refer to {3]. Let dL, denote the density,
in the sense of integral geometry, for r-planes L, in $” ([3], p. 305). With
this density, the total measure of all L, in S” (0<r<mn—1) is given by
({31, p. 309),

/ iL, = 0n0ny . Orsy _ Op...Opy , 2.1
Total Op-r-1 ... Op 0, ...0,

where 0; = 27*WY2/I'((i+1)/2) denotes the surface area of the i-dimensional
unit sphere. For =0 (2.1) gives the volume of $”, namely 0,/2, as is well
known,

Let K, be a compact convex body in §”. If M; =M;(0K,) denotes the
i-th integral of mean curvature of 3K, (for i=0, M, is the surface area of
0K,) and M;(0K,N L,,;) denotes the i-th integral of mean curvature of the
intersection of 0K, with a moving L,.,, we have ([3], p. 248),

On-z On-r-l On~

#F OM;(0K,N Lyyy) dL,y =

Mi(0K,) (2.2)
KpNL 0,y ... 000,,,,,,- ! "

This formula holds without change in euclidean and elliptic spaces.

If 6 (K,NL,,) denotes the volume of the convex set K,N L,,; we
have ({3}, p. 309)

0p-y ... Op-y-
#F ¢0,41(KpN Lyypy)dLyyy = - e vl y 2.3)
Knﬁl_”l 0,...00

where V =V(K,) denotes the volume of K,.

Finally, let us recall that the measure of all r-planes L, intersecting.
K, is given by ([3], p. 310)

Opyg ... O, v [ r=1\ 0,0, 0,4
/ dL, = =3 nr [o,,-, V+ 32 ( , )——— ——t M,;-,] (2.4)
KDL, %0 0y ...0, =1\ 21— 1/ 03~ 0,4i0r2i +1

for r even (r = 2r), and

0,-...0 r fr—1 0,y 0,4
/ dL,=7"2""" % ( ' ) TR My, (2.5)
KnNL,#0 Oy~ ...0y ™0\ 21/ 030, 5i-1 Oy
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for r odd (r=2r"+1).

For r=1 (r" =0) (2.5) is not directly applicable. However, using the
identity (O ... Op-r) (Op-1...0y) ' =(0,4...0p) (Oppy ... 047!, we get (putting
Mo=F),

/ dL,=(0,/4m) F (2.6)
KyO\L,F ¢
For n =23, r=2, (2.4) gives

/ dL,= (0,0, /87%) (V+M,) ,
KpNL2F¢ ’

3. Solid angles

Consider a compact convex body K, and an r-plane L, (0<r<n-2)
in §" which do not intersect. The set of all (r+1)-plancs L,,; which contain
L, and meet K,, can be measured with the invariant density dL,,[L,] ([3],
p. 202) which has the same explicit form for the elliptic as for the euclidean
space and coincides with the invariant element of volume of the Grassmann
manifold G, y-r-1. We call this measure the solid angle which subtends K, from
L, and we denote it by

o= [ dLyaiL,] 3.1)

where the integral is extended over all L,,, which satisfy the following
conditions

LrC Lr+1 ’ Lr+ann'-'e¢ .

Notice that for r=0, ¢§” is the usual solid angle under which K, is
seen from the point Ly. For r=n-2, ¢{" is the angle between the support
hyperplanes to K, through L,.,.

According to the given definition (3.1), the solid angle ¢{” is equal to
the (n—r—1)-dimensional volume V., of the convex set K)X,., dual of
K, defined in the introduction.

4. Integral formulas

We have denoted by dL,.,[L,] the density for (r+1)-planes L,,, about
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a fixed r-plane L,. Calling now dL,(L,.,) the density for r-planes L, in L,,,
we have the following formula

dL,(Lysy) AdL,yy=dL,A dLsy[L,] (4.1)

which is essentially due to B. Petkantschin [2] and has the same form for
elliptic as for euclidean space (see also [3], p. 207).

We want to compute the integral of both sides of (4.1) over all r- and
(r+1)-planes such that

LrnKn=¢ ’ LrCLH-l ’ Lr+ann:’é¢-

According to (3.1) the right side member gives

[ emar,,
KyOL,=¢

In order to compute the integral of the differential form on the left of
(4.1), we first leave L,,, fixed and observe that the integral of all L, such
that L,CL,,; and L,NK,=¢, is equal to the total measure of the r-planes
in L,4; (which, according to (2.1) is O,,,/0,), less the measure of the r-planes
L,C L,,, which meet the convex set K, N L,,,. Putting M{*V=M;(3K, N L,4,)
and V\"*Y=V(K,N L,,,) this measure, according to (2.4) and (2.5) is

a) For r=2r"n=r+1=2r'+1,

r’ -1 0,- 0,- i
/ dL(Lyyy)) =V 4 3 ( ’ ) B gD (4.3)
KnOL,#0 =1 \21 =1/ 0O3~1 0y 0p 254,

b) for r=2r'+1, n=r+1=2(r"+ 1),

. -1 0,-, O, ]
dLy(Lysy) = T < ’ ) T I (4.4)

/K,,ﬂLﬁ&d) =0\ 2¢ O”Or-g,‘-l 0,5

Thus, multiplying the difference between 0,,,/0, and the measures (4.3) .
or (4.4) by dL,,, and performing the integration over all L,,; which meet
K,, having into account (2.2) and (2.3) and equating with (4.2) we get:

a) For r=2r" (r even),

/ (n)dL - O”] 0"-2...0"-,--1 é < r) 0,.0”-2,‘ M.
KyNL,#o o 000, ... 0, =0\ 2i /050,40, 2iry




55

On-l On-r-l _ r r—1 Or-l 0r+2-'2i Onﬂ On-r-l Orr’ziﬂ
M2i‘l (45)

|4 .
Or....Oo =1\ 21—1 021"1 Or-2i0r—2i+l Or-l ...000,.2,'+2

b) For r=2r"+1 (r odd),
0,4 ... 0p-p-
/ 5")dL, — n2--Vnrol I:O'"_l V+
K”nLr¢¢ 000,- 01

w1 [ r 0 0,12
i=1 \2{— 1/ Opi-; Op412i0rs2-2i

%(r—l) 0,-1Ope12i  Opz ... Opy-1 On-ai My

i=0 21 03'0,4;-1 07-2,' of‘l ves 000,-4.1-2,'

The case r=0. The preceding formulas are not directly applicable for
r=0. In this case, we can proceed as follows. Let X denote the length of
the chord K, N L. The integral of the left sidc of (4.1) givesf(w—)\) dL, and
since the measure of the set of lines L, which meet K,, is (0,/4) F (according
to (2.6)) and it is known that /)\ dL,=(0,,/2) V ([3], p. 307), we have

o dLy=(0,/4) F—(0,,/2) V. (4.7)
L0¢Kn

In this formula the solid angle ¢§ is equal to the volume of the project-
ion of K, into the hyperplane dual of Lo, so that (4.7) is the extension to
the elliptic space of the so called formula of Cauchy for convex bodies in
euclidean space ([1], p. 48; [3], p. 218).

As a consequence we have that the mean value of the volume of the
projection ¢§" is

0,F —20,,V
E(p) = - P17
@) = =0, —av
where V denotes the volume and F the surface area of K,.

Some particular cases. The cases n=2,3 are known (see [3] p. 318-319
and [4] p. 186). They write

/¢{,”dL°= n(L—F)

[¢§,3)dLo= (1/2)m*F-2nV
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/¢§3’dL,=21r(M,+V)—(1/2)1r2F
For n=>4 the results are new. For # =4 we get the following pos-
sibilities
/¢§,"dLo= (2/3)m*F-nV
/¢S"dL,=21r’(V+M,)—(4/3)1r2F

/¢;‘>sz= w2 [(2/3)F + My;—M, - V]

In all cases, the integrals are extended over all Ly, L,, L, exterior to
the corresponding convex body.

5. More integral formulas

In the elliptic space, the principle of duality allows to assign to each in-
tegral formula its dual. Given a compact convex set K,,, the hypersurface pa-
rallel to 8K, in a distance 7/2, is called the hypersurface “polar” of 9K, and
it is the boundary of a convex body K? (which does not contain K,).The in-
tegrals of mean curvature of 9K, and 0K’ satisfy the relation ({3], p. 304)

M,(aK{,’) =M,,-,1-(8K,,) , 1= 0, 1, ...,n—l (51)
The formula (2.2) may be written

0n-2 On-r Op-

/ M{"(0K,N L,) dL, = M;(3K,) (5.2)

Ky mL,‘$¢ 0,-2 Oo 0,-1'
which holds for 1=0,1,...,r—1; r=2,3,...,n—1.
By duality, using (5.1), (5.2) transforms into

0, ... 0,40
MK dLyyy = =2 T 0T
KnNLypy-y =¢ 0,4 ...00 0, 4

Mp-+(0K,)  (5.3)

where K, denotes the projection of K, from L,.-; into its dual r-plane.
By the change of indices n—r—1->r, r—1—1—>i (5.3) takes the form

0p2 ... Op41 Oy
/ M,"’""’(aK,,'.,,) dL,.= n2 41 Vr+i+2 M'+i+](aK’|) (5.4)
K" nLr=¢ 0,,-,-3 Oo 0.’4-]
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which holds for i=0,1,...,.n—r—2;r=0,1,...,n—3.
For =0 we have

On-'z 0i+2

/ MK Y,) dLo= M1 (3K,,) (5.5)
L

oKy i+1
which holds for 1=0,1,..,7—2. This formula generalizes to elliptic space
the so called formula of Kubota for convex bodies in euclidean space ([1],
p- 49; [3], p. 217).
For 1=0, denoting F* =M(0K},) the surface area of K, we have

/ F*dLy=0,oM,. (5.6)

Lo§Ky

For n =3, if u denotes the perimeter of the projected set K3, (5.6) writes
/ udLy=21M,, (5.7)
Lo€Ks

The difference between the total measure (1.1) of all L, in S” and the
measure (2.4) or (2.5) of those which meet K, gives the measure of all L,
which are exterior to K,, and then (5.4) allows to write down the mean values
of the integrals of mean curvature M{"1™)(3K2,,). For instance, from (5.7)
we deduce

2M,
E(uw) = .
-V
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