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AN INEQUALITY BETWEEN THE PARTS INTO WHICH 
A CONVEX BODY IS DIVIDED BY A PLAÑE SECTION 

L. A. S A N T A L Ó 

A new proof is given of an inequality of ]. Bokowski and E. Sperner [1] 
referring to the product of the volume of the two parts into which a convex body 
is divided by a plañe. The proof, which is given for dimensions n = 2,1 uses known 
formulas of Integral Geometry and is gcneralized to convex bodies of the ellip-
tic and hyperbolic spaces. 

1. Introduction. 

Let K he a convex domain in the euclidean n-space E„ and let L„-\ be an 
hyperplane which divides K into two parts Ki and Ki. Let V (K{), V {Ki) denote 
the volumes of K\ and K2 respectively, D the diameter of K and <r„-i the (« — 1)-
dimensional volume of the intersection K n ¿n-i. Then, J. Bokowski and 
E. Sperner [1], [2] have proved the following inequality 

(1.1), vmvm < ii=2::')i^rl)jí^ D-V™-. 
n\n+\) 

whe»e a>M-i denotes the volume of the («— l)-dimensional unit sphere. For 
« = 2, 3 this inequality takes the form 

(1.2) F, f2 < (Zy/4) ffi, V,V2<(7/48)iií)^ff2. 

Our purpose is to give a new proof of the particular cases (1.2) and to 
generalize these inequalities to the elliptic and hyperbolic spaces. 
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2. A fundamental Lemma. 

Consider the segment O A on the real Une, of length a, and the segment O X 
of length X < a. Let / (r) be an integrable non-negative function defmed on the 
closed interval (0, a), which is strictly positive (/(r) > 0) for 0 < r <a. Consider 
the integral 

(2.1) nx) = Sf{t2-U)dUAdt2, /.eOX, ti^XA. 

Then we have the foUowing 

LEMMA. For any function f(r) which satisfies the stated conditions, the 
integral (2.1) has its máximum for x = a/2. 

Proof. Let F (r) be a primitive of / (r), with r = /j — /i , and G (r) a pri-
mitive of F(r). We have 

(2.2) / (X) = / [F (a - /,) - F (X - /,)] dt,= 
0 

= _ G (ü - X) + G (0) + G (a) - G (x). 

In order that / (x) have a máximum or mínimum at the point x we have 
/' (x) = F (a — x) — F (x) = 0 and since F (x) is an increasing function we will 
have a — X = X and x = a/2. This critical value / (a/2) is a máximum because 
/ (0) = / (a) = 0. 

3. The case « = 2. 

We want to consider separately the cases of the euclidean, elliptic and 
hyperbolic planes. 

a) The euclidean plañe. Consider the line Go which divides K into two 
convex domains K\ and íCj. Let ffi denote the length of the chord Go H K 
(fig. 1). Consider the pair of points Pi 6 Ki, P: Ç Ki and the line G determined by 

Fig. 1 
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them. It is well known the differential formula 

(3.1) dPiAdP2=\tz-t,\dGAdt,Adt2 

where d P¡, d Pi are the àrea elements of the plane at P\, Pi, d G 
is the density for lines on the plane and / i , h are the abscissas of Pi, Pj on G 
[3, p. 28 and 46]. 

Integration of both sides of (3.1) over all pairs Pr6íCi, Pi^Ki gives: on 
the left side we get F| Fj and in the right side we have the integral (2.1) for 
the vàlues 

(3.2) r = t2-U, f = r. F = (l/2)r^, G = (l/6)r ' . 

Therefore, denoting by a the lenght of the chord G H K, we get 

(3.3) Iix) = (l/2)ax(a-x), / (a/2) = a'/8. 

Since the measure of the set of lines which cut the chord K f) Go is equal 
to 2íri and a < D (D = diameter of K), we have 

(3.4) FiF2 = íI(x)dG <{iy/4)ai 

which is the first inequality (1.2) 

b) The elltptic case. On the elliptic plane, instead of (3.1), we have 
[3,p. 316], 

(3.5) dPi A dP2 = sin |Í2 -t,\dG A dU A dh. 

We apply the fundamental lemma for the vàlues 

(3.6) / = sin r, F = — cos r, G = - sin r 

and we have 

(3.7) I(x) = sin(,a — X) — sina + sinx. 

By integrating (3.5) over all pairs of points Pi^Kt, Pi^Ki we get 

F\Fi = í (sin (a-x) - sin a + sin x) c/ G < / (2 sin (a/2) - sin a)dG 

= 4 / sin (a/2) sin' (c/4) d G < 8 sin (D/2) sin' (D/4) a,. 
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Thercfore we have the following inequality 

(3.8) F, Fj < 8 sin (D/2) sin^(D/4) ff,. 

We have applied that the measure of Unes G which cut a segment of 
length Cl is cqual to 2 ai , the same that in the euclidean case [3, p. 310]. 

c) The hyperbolic plane. In this case, instead of (3.1) wfl have [3, p. 316] 

(3.9) dPiAdPi = slnh \ti-t,\dG A dU A dt¡. 

In order to apply the lemma, we have 

(3.10) / = sinhr, F = coshr, G = sinhr 

and therefore 

/ (x) = — sinh (a — x) + sinh a — sinh x, 
(3.11) 

/ (a/2) = 4 sinh (a/2) sinh^ (a/4). 

Since the measure of lines which intersect a segment of length ffi is also 
2<Ti, [3, p. 310] we get the inequality 

(3.12) F, Fz < 8 sinh (D/2) sinh' (D/4) a, 

which is the generalization to the hyperbolic plane of the first inequality of 
Bokowski-Sperner (1.2). 

4. The case « = 3. 

We cosider the three cases: 

a) Euclidean spacc. With the customary notation we have [3, p. 237], 

(4.1) dPiA dPi = (/j - tifdG A du AdU. 

By integration over all pairs Pi€Ki, Pi^Ki, where K\ and Ki are now the 
bodies into which K is partitioned by the plane £o, calling Vi and Vi the volumcs 
of these bodies, we have 

(4.2) / = ( í : - í . ) ' = r ' . F = (l/3)r ' , G = (l/12)f^ 
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and 

/ (X) = ( - 1/12) (a - xY + (1/12) a* - (1/12) x', I (a/2) = (7/96) a^ 

Since the measure of the set of Unes which cut the plane domain Eo f) K 
is lïo-j, where ffj denotes the surface àrea of Eo H K [3, p. 233], we get 

(4.3) Vi Vi < (7/96) Tt D^ 0-2 

which is better than the second inequality of (1.2). 

b) Elliptic space. In this case we have [3, p. 316] 

(4.4) d Pt A d Pi = sin^ti - t,) d G Adh A d h. 

In order to apply the lemma, we have now 

(4.5) / = sin^r, F = (1/2) (r - sin reos r), G = (1/4) ( r ' - sin'r) 

and according to (2.2) we have 

(4.6) / (a/2) = (1/2) sin* (a/2) + (1/8) (â  - sin' a) 

and since the measure of the lines which cut Eo f) K is equal to •na: [3, p. 310], 
we get 

(4.7) V, Vi < (1/8) (4 sin* (D/2) + D' - sm^D)-K(T2 

which generalizes the inequality of Bokowski-Spemer to the elliptic space. 

c) Hyperbolic space. In this case we have [3, p. 316] 

(4.8) dPiAdP2 = sinh' {ti - ti)dG A dtt A d ti 

and therefore we have, with the notations of n. 2, 

(4.9) / = sinh' r, F = (1 /2) (sinh r cosh - r), G = (1 /4) (sinh^ r - r') 

and thus 

/{X) = (1/4) ( - s inh ' (a-x) + (a- xf + sinh'a - c^ - sinh'A: + A;'), 
(4.10) 

/ (a/2) = (1/2) sinh* (a/2) + (1/8) (sinh'a - a'). 
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Therefore, since the measure of the set of lines which intersect the set 
Eo f) K is equal to Tzai [3, p. 310], we get 

(4.11) V, V2 < (1 /8) (4 sinh* (D/2) + sinh^ D - ¡y)T:a2 

which is the generalization to the hyperoblic space of the second inequality 
(1.2). 

5. A conjecture. 

We have considered the case in which K is partitioned by a Une (for n = 2) 
or by a plañe (for n = 3). More general is the case of a partition of K into 
two sets Ki, K2 not necessarily convex, separated by a curve (for n = 2) or by 
a surface (for n = 5). To apply the foregoing proof in this case we will need 
a lomma more general that the lemma stated in n. 2. We state it as the following 
conjecture: 

Consider the closed interval (0, a) on the real line, divided into n + I 
parts by the points 0 < ci <fl2 < ... <a„<Ca. Put Oo = 0, o„+i = a and consi
der the sets of intervals 

7 '= {(0,0,), (flj.flj), (a^.as)....} 
(5.1) 

T* = {{ai.a2). (a,.fl4)....}. 

Consider the integral 

(5.2) /(a,,fl2 a„,a)= J f(\t - t*\)dtdt*. 
liT 

í*er* 

The conjecture is that this integral has a máximum for n = 1 and oi = a/2 
for any integrable and non-negative function defíned on the interval (0, a). If it 
is not true, seek additional conditions for /. 

In order to apply this conjecture to the generalization of the inequality 
(1.1) to the elliptic and the hyperbolic spaces it should be sufficient to prové 
it for the cases / = sin" r and / = sinh" r. 


