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AN INEQUALITY BETWEEN THE PARTS INTO WHICH
A CONVEX BODY IS DIVIDED BY A PLANE SECTION

L. A. SANTALO

A new proof is given of an inequality of J. Bokowski and E. Sperner [1]
referring to the product of the volume of the two parts into which a convex body
is divided by a plane. The proof, which is given for dimensions n = 2, 3 uses known
formulas of Integral Geometry and is generalized to convex bodies of the ellip-
tic and hyperbolic spaces.

1. Introduction.

Let K be a convex domain in the euclidean n-space E. and let L._, be an
hyperplane which divides K into two parts K, and K. Let V (K)), V (K3) denote
the volumes of K, and K, respectively, D the diameter of K and .-y the (n — 1)-
dimensional volume of the intersection K N L._;. Then, J. Bokowski and
E. Sperner [1], [2] have proved the following inequality

—2""(n—1) wa-

whete wn_; denotes the volume of the (17— 1)-dimensional unit sphere. For
n = 2, 3 this inequality takes the form

(12) FIFZS(DS/4)O'1, V]V)S(7/48)1¥D‘O’z.

Our purpose is to give a new proof of the particular cases (1.2) and to
generalize these inequalities to the elliptic and hyperbolic spaces.




AN INEQUALITY BETWEEN THE PARTS INTO WHICH, ETC. 125

2. A fundamentsl Lemma.

Consider the segment O A on the real line, of length @, and the segment O X
of length x < a. Let f(r) be an integrable non-negative function defined on the
closed interval (0, @), which is strictly positive (f (r) > 0) for 0 < r <a. Consider
the integral

(2.1 Ix) = ft—t)dtyANdt,, H€E0X, HLEXA,
Then we have the following

LEMMA. For any function f(r) which satisfies the stated conditions, the
integral (2.1) has its maximum for x = a/2.

Proof. Let F(r) be a primitive of f(r), with r=1t— 1, and G(r) a pri-
mitive of F (r). We have

(2.2) Ix) =°f[F(a- t)— F(x —t)]dt =
= —G(@a—x)+ GO+ G — G(x).

In order that I(x) have a maximum or minimum at the point x we have
I'(x) =F(@a— x) — F(x) = 0 and since F (x) is an increasing function we will
have a — x = x and x = a/2. This critical value I (a/2) is a maximum because
1(0)=1(@)=0.

3. The case n = 2.

We want to consider separately the cases of the euclidean, elliptic and
hyperbolic planes.

a) The euclidean plane. Consider the line G, which divides K into two
convex domains K; and K;. Let oy denote the length of the chord Go N K
(fig. 1). Consider the pair of points P, € K,, P.€K; and the line G determined by

G
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them. It is well known the differential formula
3.1 dPAANdP,= |t —tj|]dGANdty Adt,

where d P, d P, are the area elements of the plane at P\, P, dG
is the density for lines on the plane and t,, t; are the abscissas of P1, P, on G
[3, p. 28 and 46].

Integration of both sides of (3.1) over all pairs P,€K,, P,€K; gives: on
the left side we get FiF; and in the right side we have the integral (2.1) for
the values

3.2) r=t-—t, f=r, F=Q/2)P G=(1/6)7.
Therefore, denoting by a the lenght of the chord G N K, we get
3.3) Ix)y=00/ax(a—x), I@a/2) =a"/8.

Since the measure of the set of lines which cut the chord K N Go is equal
to 20y and @ < D (D = diameter of K), we have

(3.4) FiF,=f1(x)dG < (D*/4) s,
which is the first inequality (1.2)

b) The elliptic case. On the elliptic plane, instead of (3.1), we have
[3, p- 316],

(3.5) dPy,AdP,=sinlt, —t,|dG Adt Adt,.
We apply the fundamental lemma for the values
(3.6) f=sinr, F= —cosr, G=-—sinr
and we have
(3.7) I (x) = sin(@ — x) — sina + sin x,
By integrating (3.5) over all pairs of points Py€K;, P.€K; we get

F,F; = J (sin(@a — x) — sina + sinx) d G < [ (2sin(a/2) — sina)d G
= 4 [ sin (a/2) sin’ (a/4) d G < 8s5in (D/2) sin*(D/4) o .
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Therefore we have the following inequality
(3.8) F\F, < 8sin (D/2) sin(D/4) gy .

We have applied that the measure of lines G which cut a segment of
length o, is equal to 2 ¢y, the same that in the euclidean case 3, p. 310].

¢) The hyperbolic plane. In this case, instead of (3.1) we have [3, p. 316]
3.9 dP;/\dP2=sinh|tz—t.|dG/\dh/\dtz.

In order to apply the lemma, we have
(3.10) f=sinhr, F=coshr, G =sinhr
and therefore

I(x) = — sinh (@ — x) + sinha — sinh x,
(3.11)
1(a/2) = 4sinh (a/2) sinh?® (a/4).

Since the measure of lines which intersect a segment of length o is also
20y, [3, p. 310] we get the inequality

(3.12) F, F, < 8sinh (D/2) sinh?(D/4) o,

which is the generalization to the hyperbolic plane of the first inequality of
Bokowski-Sperner (1.2).

4. The case n = 3.

We cosider the three cases:
a) Euclidean space. With the customary notation we have [3, p. 237],
4.1) dpl/\dpz=(t2—t,)sz/\dhAdtz.

By integration over all pairs P, €K,, P,€K;, where K, and K; are now the
bodies into which K is partitioned by the plane Eo, calling V; and V; the volumes
of these bodies, we have

4.2) f=t—t¥=r, F=0/3r, G=(1/12)7
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and
1(x) =(—1/12)(@a = x)*+ (1/12)a* — (1/12)x*,  1(a/2) = (7/96) a*.

Since the measure of the set of lines which cut the plane domain Eo N K
is o2, where o2 denotes the surface area of E; N K [3, p. 233], we get

(4.3) VW< (7/96) = D'a,

which is better than the second inequality of (1.2).

b) Elliptic space. 1n this case we have [3, p. 316]
4.4) dPyAdP, =sin?(t,—t)dG Adth Adi.
In order to apply the lemma, we have now
4.5) f=sin’r, F=(1/2)(r—sinrcosr), G = (1/4)(* — sin’r)
and according to (2.2) we have
4.6) 1(a/2) = (1/2)sin* (a/2) + (1/8) (& — sin’a)

and since the measure of the lines which cut E, N K is equal to ®a: {3, p. 310],
we get

4.7 Vi V2 < (1/8) (4sin* (D/2) + D* — sin? D) n o,

which generalizes the inequality of Bokowski-Sperner to the elliptic space.

c) Hyperbolic space. In this case we have [3, p. 316]
4.8) dP,AdP,=sinh®(t; —t))dG Adty Ndt
and therefore we have, with the notations of n. 2,
4.9) f=sinh’r, F = (1/2)(sinhrcosh —r), G = (1/4) (sinh’r — r?)
and thus

I(x) = (1/4) (— sinh*(@ — x) + (@ — x)* + sinh*a — &* — sinh’x + x?),
(4.10)

1(a/2) = (1/2)sinh* (a/2) + (1/8) (sinh’a — &*).
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Therefore, since the measure of the set of lines which intersect the set
Ey N K is equal to ®a: [3, p. 310], we get

4.11) Vi V2 < (1/8) (4sinh* (D/2) + sinh?’D — D) n o,

which is the generalization to the hyperoblic space of the second inequality
(1.2).

5. A conjecture.

We have considered the case in which K is partitioned by a line (for n = 2)
or by a plane (for n = 3). More general is the case of a partition of K into
two sets Ky, K: not necessarily convex, separated by a curve (for n = 2) or by
a surface (for n = 3). To apply the foregoing proof in this case we will need
a lomma more general that the lemma stated in n. 2. We state it as the following
conjecture:

Consider the closed interval (0, @) on the real line, divided into n + 1
parts by the points 0 < a1 <a#2 < ... < an<a. Put @ =0, an,; = a and consi-
der the sets of intervals

T={0, &), (@,a), (a,as),...}
(5.1)
T*={(@,a), (@,a),...}.

Consider the integral

(5.2) I(a,a,...,a0,0) = J;/(It—t‘l)dtdt‘.

el

The conjecture is that this integral has a maximum for n = 1 and a1 = a/2
for any integrable and non-negative function defined on the interval (0, a). If it
is not true, seek additional conditions for f.

In order to apply this conjecture to the generalization of the inequality
(1.1) to the elliptic and the hyperbolic spaces it should be sufficient to prove
it for the cases f = sin"r and f = sinh"r.



