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Two applications of the integral geometry in affíne 
and projective spaces. 

To Prof, O. Varga on his 50. anniversary with cordial friendship. 

By L. A. SANTALÓ (Buenos Aires). 

Introduction. 

The integral geometry in projective space was initiated by VARGA [9] 
and continuated, together with the integral geometry in affine space, by the 
present author [4]. 

In this paper we give two applications of these concepts. First we con-
sider the density for sets of pairs of paral·lel hyperplanes invariant with res-
pect to the unimodular affine group. Then we evalúate the measure of all 
pairs of paral·lel hyperplanes which contain a given convex body K: the 
result is the integral (3.1) where J{a) is the width of K corresponding to 
the direction o. Consequently, J (3.2) is an unimodular affine invariant of K 
and we obtain the inequalities (3.9) which relate / with the volume V of K. 

The second application concerns the density for sets of hyperquadrics 
invariant with respect to the projective group. We give the explicit forms 
(5.14), (5.16) and (5. 19) of this density. For n = 2 (conics on the plane) 
the formula (5.19) was given by STOKA [8]. 

§. 1. The unimodular affíne group. 

We consider the n dimensional affine space and in it the group A of 
affine transformations modulo 1, which in matrix notation is written 

(1.1) x'^Ax^B, det;l = | A | = l 

where A = (QÍJ) and B = (bi) are nxn and n x 1 matrices respectively; 
X and x' denote n x 1 matrices whose elements are the n coordinates 
Xi,Xi,...,Xn of the point x and those x'i,x'o,. ..,x'„ of the transformed 
point x'. 
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A tranoformation of the group A is determined by a pair of matrices 
(i4, B). Tfie identity corresponds to the pair (E, 0) where E is the unit 
matrix and O the n x 1 matrix with all the elements equal to zero. The 
inverse of (A,B) is 

{A,By'-{A\ -A'B) 

and the law for the product can be written 

{A,.B.;){A,, B,)^iA,A„A,B, + B,). 

According to the theory of E. CARTAN (see for instance [5]) the relative 
components of the group A will be the elements (which are pfaffian forms) 
of the matrices í¿, (of type nxn) and íio, (of type n x 1) defined by the 
equation 

{A,B)'{A -i- dA, B + dB) = {E + .Q,, Í2,). 

Thus we have 

(1.2) .Q, = y i ' í /A S2,==A'dB. 

By exterior differentiation and taking into account that 

(1.3) dA' = —A''dAA-' 
we have 

í/í2i = dA' /. d A = —A'' d A A'. d A = —íá, A Í¿, 

dí¿,^ dA'' AdB^—A'dAA'' AdB = — í¿, íl. 
0-4) . . . . . - 1 

which are the equations of structure of MAURER-CARTAN for the unimodular 
affine group A. 

In explicit form, if we set 

(1.5) A=^{a,), B = {bi), /I '=(«'>), í2, = (ro,:,),í^2 ==(«,), 

(1.2) and (1.4) can be written in the form 
ít n n 

(Oii = ^ tt"' dUhj = — ^ ai,ida"\ 'Oi = ^ a"'dbk 
h-l /r-:l h~\ 

(1.6) 
d(Oij =-= — '^(n¡,, • oihj, dwi =-- — 2 ' o^'i'''- "^1' • 

h-'-l h—l 

By differentiation of the condition det A = \, we get 

(1.7) (On + (O-a H h ('h,n = 0. 
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§ 2. Densíty for sets of paral·lel hyperplanes. 

It is known that there does not exist a density for sets of hyperplanes 
invariant with respect to A [4]. However we are going now to prové that 
such an invariant density exists for pairs of parailel hyperplanes. 

Let us consider two parailel hyperplanes 

(2.1) ux = hu ux=^h, {h,=^h.,) 

where huhi are scalars and u a 1 xn matrix «==(«,, t/^,..., u,,). 
By the unimodular affine transformation (-4, B) these hyperplanes trans-

form to 

(2.2) uA-\x—B) = hu uA-\x—B) = h.,. 

in order that the varied transformation {A-\-dA, B + dB) may give rise 
to the same hyperplanes (2.2), the relations 

(2.3) dí / i ^ ' ] - 0 ( '=1 ,2) 
\uA B + fiiJ 

must hold (observe that the denominators are scalars) and we have 

udA~\uA''B + hi)—uA-\udA-'B + uA''dB)^0. 

Since d A and dB are independent, a first condition is uA'^dB = 0, i.e. 
(2.4) í/í2, = 0. 

The remaining terms, give by application of (1.3), 

uQ,A'\hi + uA~'B) = uA'\uí2iA-'B). 
Since the terms inside the parenthesis are scalars, we can set aside 

A'^ and we have 
uS2i{hi-{-uA''B) = u(uí2,A^B) 

uS2iih2-]-uA''B)^u{uí2iA-'B) 
and by substraction 

i. e. 
(2.5) Í;Í2, = 0. 

According to the general theory (see for instance [5]) if we have a set 
of relativa components (or a set of linear combinations of relative compo­
nents), say oí<*),(o®, ...,£o<"+'' such that the system 

(2.6) o)<^> = 0, «(-> = 0, . . . , «<"+')=0 

is equivalent to the conditions (2.3), then the density for sets of pairs of 
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parallel hyperplanes (if it exists) will be the exterior product (>;<•> A w<-* A 

In our case the set (2.6) is given by (2.4) (one condition) and (2.5) 
(n conditions). Since the pairs of parallel hyperplanes are transformed tran-
sitively by the group A, without loss of generality we can take 

(2.7) « = (0,0,...,0,1), /i, = 0, /?2=1. 

The transformed hyperplanes (2. 2) take then the form 
)f n n n 

(2.8) ^ cC'Xi = ^ «"' bi, ^ a"'Xi. = X a'"b, + 1 
i-A / i^l 1 = 1 L-\ 

and the system (2.6) will be 

(2. 9) <»,i = 0, W„l = 0, f«„2 = 0, . . ., 0)nn = 0. 

Therefore the density for sets of parallel hyperplanes, when they are 
written in the form (2.8), reads 

(2. 10) d§ = W„l (0„2 A • • • A (Onn A W„ . 

The condition for this differential form to be a density is d{d§)==0, 
which is easily verified if we take into account the equations of slruc-
ture (1.4). 

By (1.6) and since deti4 = l, we obtain (we always take the densities 
in absolute value) 

n 

(2.11) d§ = ^ u"'du"^ A í/a"- / • • • A í/a'"' A db¡. 
¡=i 

This formula, together with (2.8) gives the following 

Theorem 1. The density, invariant with résped to the unimodular 
affine group A, for sets of pairs § of parallel hyperplanes written in the form 

n II 

(2.12) 21 l'Xi = m, 2 l'Xi = ffJ + 1 
i-=i i-.i 

is 

(2.13) d§! = dl' of/- A • •. A dl" • dm. 

We want now to find a geometrical interpretation of the density [2.13]. 
Let A' be a unit vector. The element of àrea on the unit hypersphere cor-
responding to the direction of I' is expressed by 

í/A' í/A''A ••• A í / r 
(2.14) í/rj = -

l' 
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and also by 

(2.15) da = ¿ ( — ly - 'AV; / \ • • • dí: ' dir' ••• dk". 
i - 1 

If )J is the unit vector normal to tiie hyperplanes (2. 12) and we put 

we have 

and 

.. V / , , v 2 . l'dl 

;, '' ^;. dl' I' . 
I' = —, dk' = ^ do 

Q 9 9-
.,, . .,3 . .,-, dt^---fdt -^fdCf •••/dt' f 

dk ídk ••• ;\dk ==• - j 2^ 
9 ?=2 9 

Ad9'dt\\--- dl" ^ v ,v l'V'í//'A ••• '(/ / '" ' \ í / r 'A ••• A í/r 2Viy 
Consequently, by (2.14) we obtain 

(2.16) í/fí — ^ r ^ í — 1 ) ' '/'ú^/' A ••• Arf/' ' Aí//'^' A ••• A dl". 

Next consider the distances 
m m-\-\ 

Pi = — . Pi 9 '- 9 
from the origin to the hyperplanes (2.12). We have 

dm m , . dm (m+\) . 
dP^—^-Yd9, dp.=^-^-^-^do 

and 
1 1 '̂  

dp, A dp., = -^dQ dm^-ry. l'dl' r, dm. 
9 9 lí 

Henee 

do A dpi ap-, = — ^ dl' \ í// ' • • • dl" A í//n = — ^ . 

Remember that we consider aiways the densities in absolute value; there-
fore we make no question of te sign. 

In order to introduce the distances p , , p^ from the origin, we observe 
that p2—p¡= \/9 and thus 

j<3!) do dpi dpi 

which is the desired geometrical interpretation for d§. 
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§. 3. Measure of sets of paral·lel hyperplanes which contain 
a given convex body. 

Let A!" be a given convex body in the n dimensional space and let 
J^J(o) be the width of K corresponding to the direction o. The measure 
of all pairs of paral·lel hyperplanes which contain K will be 

(3.1) M-
Çda ' dpi d Pi _ 1 r do 

\K 

This measures gives, together with its geometrical interpretation, the 
following affine invariant of K 

do (3.2) y= j f 
KK 

the integral extended over the half of the n dimensional unit sphere. 
Elsewhere [6] we gave an analogous affine invariant / defined by the 

following integral 

(3.3) ¡-=~[~ 
^ ' n J p" 

K 

where p = p(o) is the support function of K with respect to an interior 
point also affine invariant with respect to K. In [6] we proved that between 
/ and the volume V oi K the inequality 

holds, where equality occurs only for ellipsoids. 
If K possesses a centre of symmetry, we obviously have nI = T''^J 

and the invariant J coincides up to a constant factor with /. If K dees not 
possess a centre of symmetry, J and / are not trivially related. Let us con-
sider the inequalities 

^' f~ {xyT" \ 2 ] 

from which we deduce 

1 1 2"^' 
(3.5) — + -! s O 

vàlid for X > 0, y > 0 and where equality occurs only for x = y. Denoting 
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by P\, Pi the vàlues of p at opposite points and applying (3.5) we have 

n 

r •' j j " j (/7,+yp.)" ~ 2"'' JU;' % i ' j 

and therefore 

(3-6) J'^=^' 

where equality occurs if and only if K is centrally symmetric. From (3.6) 
and (3.4) we obtain 

4;T" 

with equality only for eiiipsoids. 
In order to obtain a lower bound for the product JV we remind that 

between the volume P of the least parallelepiped which contains K and the 
volume V the inequality 

P^nlV 

holds (see MACBEATH [2]) and that the value of J for a parallelepiped of 
volume P is 

Ji 
2" ' 

( n - l ) ! P 

as can be obtained by a direct calculation (since / is invariant with respect 
to affinities it suffices to consider the case of an «-dimensional cube; see, 
BAMBAH [1]). Henee we have 

(3.8) jV^JpVm^JrP^ 
ni-" n\(n—l)\ ' 

Since equalities cannot hold simultaneously in (3.8), we always have 
JV>2"''/n\(n—\)\. We may summarize the obtained results as follows 

Theorem 2. The measure of the set of pairs of parallel hyperplanes. 
which contain a given convex body K, invariant with respect to the group of 
unimoduíar affine transformations, is given by the integral (3.1). This mea­
sure gives rise to the invariant J (3.2) which is related with the volume V 
of J by the inequalities 

(3.9) A^^^^^^jv^ 4;T 
n\(n-l)l ' ~ T^'n{r{n;2if 

where the upper bound is attained if and only if K is an ellipsoid. 
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The exact value of the lower bound is not known. Probably it is 
attained when A" is a simplex, but 1 have not the proof. 

A direct proof of the affine invariance of J together with some gene-
ralizations for the cases n =̂  2,3 was given elsewhere [7]. 

§ 4 . The real projective group. 

Let us now consider the n-dimensional projective space and in it the 
group of projective transformations 

(4.1) x' = Ax, átiA^\ 

where A is an (n + l ) x ( n + l ) matrix and x, x' denote ( n + l ) x l matrices 
whose elements are the homogeneous coordinates x„, x , , . . .,x,. and 
x'„,x\, ...,x'n of the points x and x' respectively. 

Similariy as in the case of the affine group, the reiative components 
(Oij of the projective group are the elements of the matrix 

(4.2) í2==A'dA 

and satisfy the equations of structure 

(4.3) díi=—íiÜ. 
If we set 

A-^{a,;), A ' = («'0, íi = {oy,) 

the explícit forms of (4. 2) and (4.3) are 

(4.4) v)ij == ^ «"'dahj = — . ^ Qhjda''', dM¡j = — ^ co;». t: Mh i i j . 

By differentiation of the relation d e t ^ = l , we aiso obtain 

(4. 5) fO„„ + Wn + '̂''22 -\ h f»nn == 0. 

5. Measure of sets of hyperquadries. 

Let us consider the hyperquadric • 

(5.1) x'fZ)x = 0 

where x' denotes the 1 x (n + 1 ) transposed matrix of x and <í> is a 
(/i + 1) X (« + 1) diagonal matrix 

* 1 

0 = 

V *. / 
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with the elements f, = i 1. It is well known that every hyperquadric is pro-
jectively equivalent to one of the type (5. 1). 

By the projectivity (4.1) the hyperquadric (5. 1) transforms to 

<5.2) x'iA ')'0A'X^O. 

In order that the van'ed projectivity A-\-dA may conduce to the same 
hyperquadric, we must have 

í/((/l ')'</M"') = 0 

that is, because of (4.2) and (1.3), 

{A')\íi'0+0Í>)A'=O 
and thus 

{5.3) Í2* = íi' 0 + 0Q 0. 

The density for sets of hyperquadrics whose equation has the form 
(5.2) will be the exterior product of the independent elements of the sym-
metric matrix Í2*. These elements are 

and the relation (4.5) gives 

(5.4) ¿1,0?^ 0. 

Therefore the projective invariant density for sets of hyperquadrics may 
be written in any one of the following equivalent forms (for /=- 0,1,2,...,«) 

(5.5) dCiOJm Aoj'n ••• ('>' ••• • «*„ 

where the hat ^ means that the covered element must be omitted. 
These forms (5.5) are differential forms of degree ^n(n + 3) as ¡t 

should indeed be. An easy calculation, using the equations of structure (4.4), 
shows that d{dC,)0, and consequently (5.5) is really a projective inva-
rant density for sets of hyperquadrics. 

The densities (5.5) refer to the hyperquadric (5.2). It is our purpose 
now to introduce explicitly the coefficients of this hyperquadric, that is, the 
elements of the symmetric matrix 

(5.6) Q \A')'0A' 

which are 

(5.7) 0 , , ^ ^ " <••/«'''«". 
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From (5.6) and (5. 3) we obtain 

(5.8) 
and henee 
(5.9) 
or, explicitly 

(5. 10) 

dQ 

o* 

(ü*j -

-iA')'<>*A'' 

- —A'dQA 

- ^ auiQijdqni 
h,1-rO 

In virtue of the symmetry qij=-~qji, the matrix of the system (5.10) 
(for i^j, h^l) is the second power matrix of A, denoted by P¿(A) (see, 
for instance [3 p. 85]) and since [P'>{A)]^ = P2{A^) (as it follows from the 
known property P.2{AB)==P2{A)P.,{b) when we choose B=A'^ and re-
member that det/ l=:l , Pi{E)= E), substituting (5.10) in (5.5) we get 

5.11) í / C - 2^ (-l)"<'"'̂ ''<"·'V'"«"í/<7oo/ dq^^x / ••• i'.dqu,!\ ••• / dq„„ 

where 

(5.12) vih,l)^^^'^±^+l+^ 

is the order of the element (/?,/) in the sequence (0,0), (0,1), (0,2),..., 
(/?,/), .. . ,(n—l,n),(n,n). 

Because of (5.4) and (5.5) we observe that (—l)"'''''é,í/C does not 
depend on /; henee we can also take as density for sets of hyperquadrics 

(5.13) í / C - ( - l )"*'"*, í/C, 

and then, from (5.11) and (5.7) we deduce 

(5.14) dC=^—-^ 2^ (-l)"'""í7/wí/9.«Aí/<7oi ' ••• / dq„if ••• / dq„„. 

This is a first form for dC. A second form is obtained if we observe 
that by differentiation of det Q = + 1. We get 

(5. 15) i ; q>"dqu, 0, dq„„ -: - ¿ ' -Ç dq,., 
h. I A) h, 1^0 q 

where the accent denotes that the term h-^-l -=n is excluded. 
Substituting in (5.14) we have, up to the sign which is inessential 

since we consider aiways the densities in absolute value, 

(5.16) dC=-—dq«) dqoi A • • • / dq„-i.„ 
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This is a second form for dC. 
The densities (5.14) and (5.16) refer to the hyperquadric (5.2) which 

satisfies the condition detQ=- + 1. That is, the forms (5.14) and (5.16) 
apply when we have normalized the equation of the hyperquadric in such a 
way that detQ==^^+ 1 holds, a normalization which is aiways possible for 
non degenerate hyperquadrics. 

Another normalization couid be to take the equation of the hyper­
quadric in the form 

n 

(5.17) yiq*iX¡x,=^Q with q*„ \. 

In order to apply to this case the above result, it is enough to set 

. Q<i A j i / . \ det(o,7) 1 
q " •" í7"+' 0"+ ' 
' na * Ull ^un 

We shall have 

(5.18) q>j-q1jJ'^, Q'"" - -~T = J^ 

and, since 

we get 

and 

n 

li,l = 0 

dq, = J" "+' dql—-yr à' "+i q% ¿ q""dqla 

11(11+3) 

dqoo ' dqm ••• dq„.un ---^ -*"+" dqm dq'n A ••• \dqt^,„ 
t 11(11+3) » 

-^TTT ^'^^^^ Z' qW'dq'oa ^ dql, A ••• \ dqU.„. 

Since in the last sum the vàlues i^ j= n are excluded and q*„=\, we 
have 

n 

ZQW''=^ (n+\)—q'"" 
and consequentiy 

. 11(11+3) 

dqaa • dq,n ' ••• ^ í/^„-i,„ = ^ - - j j " -<"+" q''"·dqm ••• / dq*-i,„. 

Taking into account (5.16) and (5.18) we finally get, up to the sign, 

dq?»/ dq'i A ••• ; dq*,-u„ 
(5.19) dC 

in+\)J' 
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For /I = 2, the density for sets of conics written in the forní qooxl + 
+ 2901X0X1 + 2̂ 02X0X2 + qnxl + 29-12X1X2 + x| = 0 becomes 

. ^ _ dqoo A dqoi A dq^ A dqn A dq^2 

This expression, up to the factor 1/3 which is inessential, was given 
by STOKA [8]. 

We can summarize the above results in the following 

Theorem 3 . The projective invariant density for sets of non degeneróte 
hyperquadrics x'Qx = 0 is given by any one of the equivalent forms (5.14), 
(5.16) when det Q = ± 1. / / the equation of the hyperquadrics satisfies the 
condition qnn = 1 and we set det Q = J, then the density takes the form 
(5.19). 
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