
 HOROSPHERES AND CONVEX BODIES
 IN HYPERBOLIC SPACE

 L. A. SANTALO

 1. Introduction. In extending certain topics from euclidean to
 hyperbolic geometry one finds that in certain cases the euclidean
 planes transfer into hyperbolic planes (geodesic surfaces), whilst in
 other cases the natural analogue for hyperbolic space of the euclidean
 planes are the horospheres (limit spheres). For instance, in the work
 of Gelfand and Graev on the application of the integral geometry to
 group representations [5], in passing from euclidean to hyperbolic
 space the natural analogue of euclidean planes are the horospheres.
 In the present note we show that the same happens with certain inte-
 gral formulae on convex bodies. If K is a convex body in euclidean
 3-dimensional space, it is well known that the measure of all planes
 meeting K is equal to the integral of mean curvature M of the bound-
 ary of K (assumed of class C2) (see, for instance, Kendall-Moran
 [6, p. 80]). In hyperbolic space the same measure is equal to M- V,
 where V is the volume of K [7]. However if instead of planes we
 consider the set of horospheres which intersect K, we shall prove
 that the measure is again M. We also prove, in passing, the formulae
 (3.4) and (4.4) referring to horospheres which intersect a fixed curve
 or a fixed surface of hyperbolic space.

 2. Horospheres in hyperbolic space. We shall first review a few
 notions on surfaces in hyperbolic space which will be useful for our
 purposes.

 In a system p, 0, 4 of geodesic polar coordinates the arc element has
 the form (Cartan [2, p. 240]),

 (2.1) ds2 = dp2 + sinh2 p(d02 + sin'2 0d42)

 and the volume element is

 (2.2) dV = sinh2 pdp A do

 where dco=sin GdOAdq represents the element of solid angle cor-
 responding to the direction 0, q.

 Between the principal radii of normal curvature ri (i= 1, 2) at a
 point P of a surface 2 and the distances Ri from P to the contact
 point of the normal to 2 at P with the envelope of the normals to 2
 along the corresponding line of curvature, the relations
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 (2.3) ri = tanh R;

 hold (Eisenhart [4, p. 214]).
 The integral of the mean curvature M of a closed surface z (of

 class C2) is defined by

 (2.4) M + do

 where da denotes the area element of 2.
 If ka denotes the absolute or intrinsic (Gaussian) curvature and

 kr = 1/rlr2 the relative curvature of z at P, since the curvature of the
 hyperbolic space is -1, we have (Cartan [2, p. 194])

 (2.5) k - = k,-1.

 For the planes (geodesic surfaces) of the hyperbolic space, we have
 kr =0 and therefore ka = -1. The horospheres (limit spheres) result
 from spheres (Ri constant), when Ri-> oo ; therefore, for horospheres
 we have ri=r2 =1 and k, =1, ka-=O.

 Let us consider a surface 2 and a horosphere H which intersect in
 the curve r. Let P be a point of r and N2, NH the normals to 2, H
 at P, and N the principal normal of r at P. Let a be the angle between

 N2 and N, a, the angle between NH and N and call 6= ae +a, = angle
 between Nz and NH. Meusnier's theorem gives

 (2.6) p = r cos a = r' COS a,

 where p denotes the radius of curvature of r at P and r, r' are respec-
 tively the radii of normal curvature of 2, H at P corresponding to
 the direction tangent to r (Eisenhart [4, p. 152], Cartan [2, p. 224]).

 On the other hand, if p2 and pH1 denote the radii of geodesic curva-

 ture of r considered respectively as a curve of 2 and a curve of H, we
 have (Eisenhart [4, p. 152], Cartan [2, p. 225])

 (2.7) p = pa sin a = pg sin a,.

 Since H is a horosphere, we have r'= 1 and from (2.6) and (2.7) we
 deduce

 (2.8) pH = (r sin 0)/(1 -r cos O).
 3. Density for horospheres. Let S be a sphere of center C and

 radius R in hyperbolic space. Assume that the origin of coordinates
 0 is exterior to S and let p +R, 0, / be the geodesic polar coordinates
 of C, p being the distance from 0 to S. In order to have a measure for
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 sets of spheres of radius R which are invariant under the group of
 hyperbolic motions, we may take any density of the form f(R)d V,
 where f(R) is an arbitrary function of R and d V= sinh2 (p +R)dp Ad
 is the volume element corresponding to the center C. When R-> oo,
 the spheres S pass to horospheres H and in order to obtain a not
 constant density for sets of horospheres, we take f(R) such that
 f(R)e2R->constantO, oo. Then, the density for horospheres results,
 up to a constant factor,

 (3.1) dH+ = e2Pdp A dw

 where p denotes the distance from the origin 0 to the horosphere H.
 The way we have obtained this density shows that, up to a constant

 factor, it is the unique one which is invariant with respect to the
 group of hyperbolic motions of the space. The notation H+ indicates
 that the horosphere H has its convexity towards the origin of coordi-
 nates 0.

 Analogously, if we start from spheres which contain 0 in its interior,

 we will have d V=sinh2(R-p)dpAdw, so proceeding as before we get

 (3.2) dH_ = e-2Pdp A dw

 which applies to horospheres with the concavity towards 0. We shall
 write dH for the density of horospheres, with the convention of tak-
 ing dH+ or dH_ according as the convexity of H is turned towards 0
 or in the opposite sense.

 As an application, consider a fixed curve r of length L and a mov-
 ing sphere of constant radius R. If v is the number of intersection
 points between r and S, the integral formula

 (3.3) fvdV = 27rLsinh 2R

 is known where d V is the volume element corresponding to the center

 C of S and the integral is extended over all positions of S for which
 POO. Formula (3.3) is well known in the euclidean case (in which
 sinh R must be replaced by R) [8] and it holds with a similar proof in
 hyperbolic space taking into account that the surface area of the
 sphere of radius R is 4r sinh2 R in this case. Multiplying (3.3) by
 4e-2R and making R- - o, we get

 (3.4) f vdH= 2rL

 where v means now the number of intersection points of r with the
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 horosphere H and the integral may be considered as extended over all
 horospheres, v being zero for the horospheres which do not intersect r.

 4. A differential formula on densities. We need a formula on
 densities analogous to a known formula of the integral geometry of
 euclidean space.

 Let Io, 11 be two surfaces (of class C2) in euclidean space, with 10
 fixed and 11 moving with the kinematic density d21, which intersect
 in a curve F. We denote by 0 the angle between the normals to Io,
 11 and by ds the arc element of r at a point P. Then Blaschke proved
 the following formula [1],

 (4.1) ds A dSj = sin2 OdO A d?o A do A doi A do,

 where doo, da, denote the area elements of Zo, 24 at P and fo, qi
 denote rotations about the respective normals to Zo, 24 at P. This
 formula (4.1) has been generalized to n-dimensional euclidean space
 by S. S. Chern [3], to elliptic space by Ta-Jen Wu [9] and it holds
 with analogous proof in hyperbolic space [7].

 Let us consider the case in which 24 is a sphere of radius R and
 center C. Then dcZ, =d VAdw Adr, where d V is the element of volume
 at C, dco is the element of solid angle corresponding to the direction
 CP and dr is the rotation element about the line CP. We have also
 dai1sinh2 Rdw, dr=dq$i and therefore (4.1) gives

 (4.2) ds A dV = sin2 Osinh2 R dO A dao A d4o.

 We recall that, as usual in integral geometry, we always consider
 the densities in absolute value, so there is no question of sign. Multi-
 plying both sides of (4.2) by 4e-2R and making R-*oo, we get (ac-
 cording to ?3),

 (4.3) ds A dEf = sin2 OdO A do'o A doo

 which is the formula on densities we want to obtain.
 We get a first application of (4.3) by integrating over all positions

 of H in which it intersects a fixed surface 2o of area Fo (O<0< 2r,
 O?<q$ r). We get

 (4.4) f XdH = r'Fo
 g2000

 where X is the length of the intersection curve r of ZO and H.

 5. Horospheres which intersect a convex body. Let us apply the
 formula (4.3) to the case of a closed surface 2o of class C2 intersected
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 by a horosphere H. Let pH be the radius of geodesic curvature of the
 intersection curve r, considered as a curve of the horosphere H. Ac-
 cording to (2.8) and the Euler theorem which gives the normal curva-
 ture 1/r of Zo at P in terms of the principal normal curvatures 1/ri,
 1/r2 (a theorem which holds in hyperbolic space with the same form
 as in euclidean space, Eisenhart [4, p. 154]), we have

 K49 = I/p,' = (1/sin 0)((cos2 cO)/r1 + (sin2 o)/72) - cot 0.

 Multiplying both sides of (4.3) by Kg and integrating over all posi-
 tions of H with HYo=0#O, we get:

 (a) At the left side we have

 fH~ O(f Kds) dH = 2irz- ndH
 H^20so r nZ^s76o

 where n is the Euler characteristic of the 2-dimensional domain on H
 which is interior to Zo and whose boundary is r. We have applied

 frKH4ds = 2xn, which follows from the fact that the absolute curvature
 of H is 0 and therefore its intrinsic geometry coincides with that of the

 euclidean plane.

 (b) At the right side we have

 Iw | sinol | d dXro (cos2 0+ sin2 4o
 d J0 ? ri r2

 -7rFo sin 0 1 cos OdO = 4irM,.

 Consequently, we have

 f ndH = 2Mo.

 If we call h-convex the surfaces which are closed and n = 1 for any
 horosphere (i.e. the intersection curve r=Hr20 is simply connected
 for any H), we have the

 THEOREM. The measure of the horospheres which intersect an h-convex

 surface TO is equal to 2Mo, where Mo is the integral of mean curvature
 of o.

 Note that every h-convex surface is convex; the converse is clearly
 not true.



 i968] HOROSPHERES AND CONVEX BODIES 395

 BIBLIOGRAPHY

 1. W. Blaschke, Integralgeometrie 17. Ueber Kinematick, Bull. Soc. Math. Grece
 17 (1936), 1-12.

 2. E. Cartan, Leqons sur la gdometrie des espaces de Riemann, Gauthier-Villars,
 Paris, 1946.

 3. S. S. Chern, On the kinematic formula in the euclidean space of n dimensions,
 Amer. J. Math. 74 (1952)) 227-236.

 4. L. Eisenhart, Riemannian geometry, Princeton Univ. Press, Princeton, N. J.,
 1949.

 5. I. M. Gelfand and M. I. Graev, An application of the horosphere method to the
 spectral analysis of functions in real and imaginary Lobatchewsky spaces, Trudy Mos-
 kov. Mat. ObW. 11 (1962), 243-308.

 6. M. G. Kendall and P. A. P. Moran, Geometrical probability, Hafner, New York,
 1963.

 7. L. A. Santal6, Geometria integral en los espacios tridimensionales de curvatura
 constante, Math. Notae 9 (1949), 1-28.

 8. f A theorem and an inequality referring to rectifiable curves, Amer. J.
 Math. 63 (1941), 635-644.

 9. Ta-Jen Wu, Ueber elliptische Geometrie, Math, Z. 43 (1938), 495-521.

 FACULTAD DE CIENCIAS EXACTAS Y NATURALES, UNIVERSIDAD DE BUENOS AIREs




