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ABSTRACT. The Integral Geometry in the hyperbolic plane was initiated, many
years ago, in [3]. Later on, it was applied to the geometry of vandom mosaics in the
hyperbolic plane [7]. Im the present work we extend fo the hyperbolic plane some
new vesults of the euclidean integval geometry which have been given in vecent years
Jor several authors, in pavticular certain vesults of H. Hadwiger [3] and some for-
mulas of H. J. Firey [2], R. Schueider (8], (9] and W. Weil [10] on the kinematic
measuve for sets of support figuves.

1. Some elementary remarks and two conjectures

Let K (t) be a family of bounded closed convex sets in the hyper-
bolic plane, depending on the parameter t (0 <t) and such that
K(t)C Kty for t; <t,

Let F (t) denote the area and L (t) the perimeter of K (t). The
isoperimetric inequality

(1.1) 12— 4xF—F>0

is well known, where the equality sign holds if and only if K is a cir-
cle [5], [6, p. 324].

(*) Dedicado a la memoria de Anténio A. Monteiro, en recuerdo de sin-
cera amistad, admiracién y gratitud por su obra matemitica en la Argentina.
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Assume that, for any point P of the plane, there is a value t, of t
such that, for all t > t,, we have Pe K (t). We then say that K (t)
expands over the whole plane, as t —oo.

From (1.1) we deduce

. F(
(1.2) lim <1l
t— o0 L (t)

The convex domain K (t) is said to be h-convex, or convex with
respect to horocycles, when for each pair of points A,B belonging to
the domain, the entire segments of the two horocycles AB also belong
to the domain. Any h-convex set is convex, but the converse is not
true. If the boundary 8 K (t) is smooth, the necessary and suficient
condition for h-convexity is that the curvature of 8 K (geodesic cur-
vature) satisfies the condition X, > 1. For instance, the circles are
all h-convex. The Gauss-Bonnet formula

(13) [, ds=2=+F
ok

gives then lim; _, o (F/L) > 1 and hence, taking (1.2) into account, we
have that for all h-convex sets which expand to the whole hiperbolic
plane, the relation
. F(Y)
(1.4) lim ———=1
t— oo L (t)
holds [7].
We deduce some elementary consequences (the random lines are
assumed to be given with the uniform invariant density of the Inte-
gral Gometry [6]):

a) If o denotes the length of the chord that the random line G
determines on the h-convex set K, it is well known that the mean value
of ¢ is [6, p. 312]

(1.5) E (6) = = F/L.
Therefore, according to (1.4), we have: the mean value of the length

of the chord that a random line G determines on any h-convex domain K (t),
tends to m as K (t) expands to the whole hyperbolic plane.
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b) Given independently at random two lines G, , G, which inter-
sec with a convex set K, the probability that they meet inside K is
known to be p (G, N Gy € K) = 2 = F/L2 Therefore we have: the proba-
bulity that two independent lines wich intersect with a given h-convex set K,
mect inside K tends to O as K expands to the whole hyperbolic plane.

¢) The probability that two independent random lines G, , G,
which intersect with a given convex domain K be non secant lines
in the hyperbolic plane (i.e. G; N G, = 0) is

(1.6) PGING,=0|GNK#0, GoNnK#£0) =
2nF 2 .
=1— ——ﬁ—f(w—smw)dP
L2 L2
P¢K

where P is a point exterior to K and o is the angle between the support
lines of K through P. The proof of (1.6) is straightforward by the same
method of the euclidean and elliptic planes [6, pp. 51, 319] for which
itis p=0.

If K is a circle, by direct computation it is easy to show that the
last term of (1.6) tends to 0 as L —oco. Thus we have: the probability
that two independent random lines which meet a given circle of radius R
be non secant lines of the hyperbolic plane, tends to 1 as R — oo,

We end this section with two conjectures:

1) The equality (1.4) holds good for any convex domain of the
hyperbolic plane which expands to the whole plane, i.e. the conditon
of h-convexity is superfluous.

2) The relation im p (G,N G, =0 |GNK#0, GGNK#0) =1,
as K expands to the whole hyperbolic plane, which we have proven
for circles, holds good for any convex set K of the hyperbolic plane.

The proof of these conjectures will be interesting in order to fill
several gaps in the integral geometry of the hyperbolic plane.

16
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2. " Generalization of some formulas of Hadwiger to the Hyperbolic plane

2.1. Let K be a convex set of area F and perimeter L in the hyper-
bohc plane H2 The lenght L, and area Fy of the set K, parallel to K
in the distance p, are given by [6, p. 322]

' Lo= (2= + F) sinh p 4 L cosbhtpf

2.1
@0 F,= (2n + F) cosh p + L sihn p — 2.

Notice that, if K expands t(; tﬂe whole plané, we have
(2.2) lim (Ep/L) =exp ¢ , liin (Fo/F) — exp p.

In the enclidean plane, both limits are equal to 1.
Let f (p) be an integrable function such that

o0 [oe] .
@3 [t sinhp dp'<oo, ff(p) cosh p dp < oo,
“ R . -

A point P exterior to K may be determined by the parameter P
of the exterior parallel set of K which boundary 8 K, contains P (dis-
tance from P to K) and the direction @ of the tangent line to @ K; at P.
The element of area at P is then dP = ds, dp, where ds, means the
arc length of 8 K, at P. Therefore, we have, taking (2.1) into account,

p) dP = f dsd_ f ZTC—}—FSIth—l—LLOShp]d
p UP P

where the first ‘~integrél is_extended to the exterior of K.
This formula may be written

(2.4) jf()dp_f()FJr(szrF ff sinh ¢ dp +

H,

—{—Lff(p) cosh p dp
0

where ¢ means the distance from P to K and the integral on the left
is extended to the whole hyperbolic plane HZ

This formula (2.4) generalizes to the hyperbolic plane, an analo-
gous formula given by HaDpWIGER for the euclidean n-space [3].
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ExampLE. For f (p) = exp (— ap), a > 1, we have

> 1
(2.5) f exp (— ap) sinh ¢ dP = s
5 ) a?—1
n OO a
/ exp (—ap) cosh p dp = —
a?—1

0
and therefore we have, for any convex curve K of the hyperbolic plane

,,

1 .
(2.6) /exp(———ap)dP: s @rtaltath) @>1).
. a~ —
H2 .

The analogous formula in the euclidean plane reads

2.7 fexp (—ap)dP=a22n +al -+ a?F).
‘E2

2.2. The density for lines in H2 is dG = cosh ¢ dp dg, where
is the distance from G to the origin and ¢ is the angle of the normal
to G through the origin with a fixed direction [6, p. 3068]. The measure
of the set of lines whose distance to a convex set K lies between ¢ and
p+deis Loyap—Lg=1Jdp. Therefore, according to 2.1), if £ (p)
is any function with the condltlons (2.3), we have

2.8) '/‘f () dG = L £ (0) -+ fo;(p) L; do =

u3 0
:Lf(0)+(2n+Fj o) cosh o dp+L[ o) sinh ¢ do.
0 0

For instance, for f (p) = exp (— ap), a > 1, we have

2.9) /‘exp(—ap)dGz———iT(Zn—f—F—!—aL), a>1

o a2 —
Hi

where H, means the set of all lines of the hyperbolic plane.
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The analogous formula for the euclidean plane, reads

2.10) [(exp (—ag) 4G =a* @m +aT),
B3 '

23. Let K, K, be two convex sets In H2 We know that the
measure of the set of congruent sets to K, which intersect with Kp
(exterior parallel set to K in the distance p) is [6, p. 321]

@211) m(K,NK#0) =27 (Fe+F) +F R+t Lol

here L, and F, are given by (2.1).
The measure of the sets congruent with K; whose distance to.K
lies between g and p + dp, using (2.1) will be

2.12) My ge — My = mgdp = [(Fsinhp - L cosh p + 2w sinh p) (27 +
p+dp 3 e P
+ F) + (F cosh p + L sinh p 4+ 27 cosh ¢) L] dp.

Therefore, for any function f (p) which satisfies the conditions (2.3)
we have

213)  [i()dK,=1(0)[2 (F+F) +FF +LL

4 2R+ L)+ LF, +FL [1()coshpde
0 .

L@+ F) @n+ B+ LLy [1(e) sinh o de
0

where the integral on the left is extended over. all sets congruent to K,
of the hyperbolic plane.

For euclidean n-spaces, this formula was given by HADWIGER [3].
The classical formula (2.11) corresponds to f (0) = 1, f () = 0 for o # 0.

3. Kinematic measures for sets of support figures

W. J. Firey [2], R. SCHNEIDER [8], [9] and W. WEIL [10] have
considered sets of compact convex sets congruent to K, which touch
a fixed compact convex set K, i.e. such that K, and K bave no inte-
rior points in common and 8K N?d K, is not empty. We want to
extend their results to the hyperbolic plane.
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From (2.11) and (2.1) we deduce-' . .-
lim o=* fm (Ko N K; #0) —~m(KNK,#0)] =

p—0

3.1)

d
:[d—m(KpﬁK#Q)] =2z +F)L+ 2=+ F)L,.
P p=0

This expression is called the kinematic measure of positions of ‘K,
which support K. ‘

If B, B,, are subsets of the respective boundaries of 'K and K|,
their normal images on the unit circle Q can be written, respectively

(3.1) y=[Kyds, v f K! ds,
B B

where K, , K} are the geodesic curvatures and s, s, the arc elements
on 3 K, 8 K,. :

If 1, 1; are the respective lenghts of the arcs B, B8,, the kinematic
measure of positions of K, which support K in such a way that B, sup-
ports B is ’

(3.2) m (g, Bl) =vl .’1‘ 1.l

This formula follows from (3.1) noting that the classical formula
of Gauss-Bonnet, when § =9 K, 8, =8 K, gives

y=2=n+4F, vv=2=n+F,.

4. Some problems of Geometric'Probability

4.1. Consider on the hyperbolic plane H2 a fixed convex set K.
We give at random (uniformly, in the sense of the theory of Geometric
Probability) a line-segment S of lenght 1. Assume that S touches K.
We want the probability that the contact point 8 KNS be an end
point of S.

According to (3.1) the total measure of positions of S, is

(4.1) m@EK,S)=2@2r+F)l-2rL
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and the measure of the positions in which S has an end point touching 8 K
corresponds to l; = 0,i.e. m (@ K N end point of S# @) = 2= L. Thus,
the probability is ‘

L

42 3K A end point of S o @) = e
(42)  p@EKnend point of S0 =0 m T Ty

The probability that 8 K and S touches in an interior point of S
will be

@2r+F)l
2+ F)l4=L

4.3)  p (8 K interior poit of S# @) =

If K js h-convex and expands to the whole hyperbolic plane, the
probabilities (4.2) and (4.3) tend to =/(x + 1) and 1/(m + 1) respectively.
In the case of the euclidean plane, these limits are 1 and 0 respectively.

49 et K be a fixed convex set in H? and K; a moving triangle
T, = ABC which touches 9 K. We want the probability that the con-
tact point be a vertex of the triangle.

According to (3.1) the total measure of contact positions in which
the triangle touches K is

My = 27 +F) L + @n+ F) L

where L, is the perimeter and F, ‘the area of the triangle.

The kinematic measure of the set of positions with a vertex tou-
ching & K, according to (3.2) will be (2= + F,) L and the requested
probability results to be

2n+F,)L
@rn+F)L+@2r+FL;

p (@K and T touches in a vertex) =

The probability that 8 K and T touches in a side of T, is the com-
plementary.

This kind of problems, in euclidean 3-space, were initiated by
P. Mc MuiLeEN (4].
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5. Linefseginent.processés in the hyperbolic plane

5.1. The measure of the set of oriented line-segments S! = 0 A
of fixed lenght 1, which intersect with a given convex set K, according
o (2.11) is

(5.1) m(KNS, #0)=2xF 21 L

and the measure of the onented hne—cegment whose origin is interior
to K is

(5.2) m(S,|0eK)=2xF,

The formulas (5.1) and (5.2) are the same for the hyperbolic and
for the euclidean plane [6, pp. 90, 321]. Therefore, the probability
that a random segment S, intersecting with K have its origin inside K, is

nF

5.3 0eK|SSNK#Q) = ——
(5.3) P |51 ) FLLL
if K is assumed h-convex and expands to the whole hyperbolic plane
(F, L —o00) this probability tends to 1 for the euclidean plane and
to =/(r + 1) for the hyperbolic plane. That means that «dge effects
are signiﬁcant by passing to the limit in the hyperbolic case.

5.2, ThlS «edge effect» is clearly made ev1dent in the followmg
example.

Let K, be a convex set contained in K in such a way that any
oriented segment of length I, which intersects with K, has the origin
inside K. The -probability that a random segment S, which has the
origin 0 € K, intersects with K, will be

2By 1L
(5.4) Py = Tt
zF

a.nd the probablhty that a orlented segment S, which 1ntersects vv1th K,
also intersects with K,, will.be : »
nF+ 1L,

5.5 =
(5.5) P2 <F L1



248 L. A. SANTALO

Given n random segments with the conditions above, the proba-
bilities that m of them intersect with K, will be, respectively (bino-
mial law)

(5.6) Pa=(H) PP (1 —p)" ™  Pa= () P¥ (1 — p2)™.

Assume that n — oo and K expands to the whole hyperbolic plane
in such a way that

n
(5.7 7 —> & = constant.

The probabilities (5.6) will tend to the limits

. (« Hy)" ,
(58) Pim = T exp (— o Hl)’
(o Hy)™
Pom = m‘2 (294 (—‘ ed H2)
where
1L F 1L,
(5.9) H,=F,+t —, H= ke
T w41

Therefore we get two kind of oriented line-segment processes in
the hyperbolic plane. The first correspond to a Poisson point process
of intensity «, each point being the origin of an oriented segment of
length 1 with the orientation uniformly distributed from 0 to 2w In
this case we have E (m) = a H;, and E (m) —oco as 1 —o0.

The second process gives

nFy -+ 11,
w41

E(m)=oa

and therefore, if 1 —>o00 we have E (m) —a L, We can speak of a
process of rays which has no analogous in the euclidean plane.

On line-segment processes in the euclidean plane, see R. COwAN (1.
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