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INTEGRAL GEOMETRY

L. A. Santalo

1. INTRODUCTION
We shall‘begin with three simple examples which will show the
basic ideas on which integral geometry has been developed.

1.1. Sets of points. Let X be a set of points in the euclidean
plane E;. The measure (ordinary area) of X is defined by the
integral

(1.1) m(X) = fx dz dy.

Let I be the group of motions in E;. With respect to an or-
thogonal Cartesian system of coordinates, the equations of &

" motion ¥ € M are

2 =zcosp —ysinp+a
y = z8in ¢ 4+ ycosep 4 b.

(1.2)

The rundamental property of the measure (1.1) is that of being
303
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invariant under M. That is, if X’ = uX is the transform of X by
u, we have

1.3)

mWh=¢WW=AM@=MD

as follows immediately from (1.2). It is well known that this prop-
perty characterizes the measure (1.1) up to a constant factor.

Because we are generally interested only in the differential form
under the integral sign in (1.1), we shall write dP = dz dy, or,
more precisely,

(1.4) dP =dzx A dy

to indicate that the differential form under a multiple integral sign

is an exterior differential form [see, for example, Munroe (43)].
The exterior differential form (1.4) is called the density for

points in E; with respect to J. We shall always take the densities
in absolute value.

1.2. Sets of lines. Let X now be a set of lines in Ex—for example, . #iii!
the set of all lines @ which intersect a given convex domain K. We :
ask for a measure of X invariant under . i

Let p be the distance from the origin O to G and 6 the angle .
formed by the perpendicular to G through O and the z-axis. We
maintain that this invariant measure is given by

(1.5) mm=L@w

For a proof, we observe that by the motion » [Relation (1.2)] ‘, Wy q "’
the line coordinates p, 6 transform according to St W
(16) 6 =0+¢, p =p-+acos(@+ ¢)+ bsin (64 ¢)
and putting X’ = uX, we have

mX) = [o,dpf 8 = [, dp d8 = m() g

which proves the invariance of m(X). That this measure is unique, '» 1
up to a constant factor, follows from the transitivity of the lines

under M, since if /x f(p, 6) dp d@ is invariant we must have

= RESaNaG

Ty
1
4 24
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according to( 1.6), / f(', 0 dp’ do'

last two equalities, we obtain /x B¢

If this equality holds for any set X ;
f(p, 6), and, since any line G(p, 6)
other G(p’, ¢') by a motion, we ded
The differential form
(%)) dG = dp /
taken in absolute value, is called t}
respect to IN.
Let us consider a simple applicati
set of lines which cut a fixed segmer
invariance under N we may take t}

dent with the middle point of S and
direction of S; then we have

(1.8) m@G;GNS»=0) = [ d
GNI=0

If instead of S we consider a po
finite number of segments S; of len
S; and summing we get

(1.9) [na6 =
where n = n(G) is the number of
and L is the length of I'. The inte
all lines of the plane, n being 0 if G
it is not difficult to prove that (1.9)
[Blaschke (3)].

Conversely, given a continuum o;
integral on the left of (1.9) hasa n
as a definition for the length of T, -
length [Nobeling (45)].

For a convex curve K we haven =
except for the positions in which «
which are of zero measure. Consequ
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“hat is, if X’ = uX is the transform of X by
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X invariant under M.

nce from the origin O to G and @ the angle
wdicular to G through O and the z-axis. We
yariant measure is gived by

m(X) = [, dp ds.

serve that by the motion u [Relation (1.2)]
», 6 transform according to

p'=p-+acos(@+ ¢)+ bsin (8 + ¢)
7, we have
g dp’ do’ = /x dp df = m(X)

riance of m(X). That this measure is unique,
or, follows from the transitivity of the lines

(Xf(p, 6) dp d9 is invariant we must have

/Xf(P, 6) dp d9, and, on the other hand,

{.'
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i
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L)
. taken in absolute value, is called the density for lines in E; with

C(18) m(@GNS=0)= ! dpdo = [
\ GNS»= 0
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sceording to( 1.6), [, /@', 8) dp’ df’ = [Y 7', 8) dp dd. From the

last two equalities, we obtain [x @', ) dp db = [‘z (p, 6) dp db.
If this equality holds for any set X it must be true that f(p’, §') =
f(p, 6), and, since any line G(p, 6) can be transformed into any
other G(p’, ¢') by a motion, we deduce f(p, §) = constant.

The differential form

dG = dp A db,

respect to M.

Let us consider a simple application. To get the measure of the
set of lines which cut a fixed segment S of length I, because of the
invariance under I we may take the origin of coordinates coinci-
dent with the middle point of S and the z-axis coincident with the

. direction of S; then we have

l
3 cos Oldo = 2,

If instead of S we consider a polygonal line I' composed of a
finite number of segments S; of lengths I, writing (1.8) for each
S; and summing we get

(1.9) [ ndG = 2L

* where n = n(Q@) is the number of points in which G(p, 6) cuts I'
% and L is the length of I'. The integral in (1.9) is extended over
i & _all lines of the plane, n being 0 if G N\ T = 0. By a limit process
¥ ¢ it is not difficult to prove that (1.9) holds for any rectifiable curve

{Blaschke (3)].
Conversely, given a continuum of points I' in the plane, if the
integral on the left of (1.9) has a meaning, then it can be taken

. a8 a definition for the length of I', which is the so-called Favard

length [Nobeling (45)].
For a convex curve K we have n = 2 for all @ which intersect K,

. & except for the positions in which G is a supporting line of K,

which are of zero measure. Consequently we have: The measure
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of the set of lines which intersect a convex curve is equal to its
length.

1.3. Kinematic density. Let us now consider a set X of oriented
congruent segments S of length [—for example, the set of those
which intersect a fixed convex domain. The position of S in E,
is determined by the coordinates of its origin P(z,y) and the
angle a formed by S and the z-axis. If we want to define a measure
for X invariant under S0, we must take

(1.10) m(X) = jx dz dy da.

To see this, we first observe that by a motion (1.2) the variables
(,y, «) transform according to (1.2) and o' = a+ ¢ Conse-
quently the Jacobian of the transformation is 1, and we have

m(X) = [, 4 dy da' = [, dz dy da = m(X)

where X’ = uX, which proves the invariance of m(X). The
uniqueness, up to a constant factor, follows from the transitivity -
of I with respect to the congruent segments of the plane by the .::. §
same argument previously given for the lines. ;: &

If instead of segments we want to measure gets of congruent
figures K, since the position of such a figure is determined by the
position of & point P(z, ) rigidly bound to K and the angle @ :
between & fixed direction PA in K and the z-axis, we can take
the same integral (1.10). The differential form

(1.11) | dK = dz A dy A da L

is called the kinematic density for E; with respect to the group ;M.
It is always taken in absolute value. "

Another form for dK is obtained if instead of the coordinates’
(z,y, «) for the oriented segment S, we take the coordinates ',
(p, 6) of the line G which contains 8 and the distance ¢ = HP
from P to the foot H of the perpendicular drawn from the origin 0’
to G. The transformation formulas are

INTEGRAL GE

and consequently, up to the sig
dp A d A di. We may then write

(1.13) dK = dG

where we write G in order to indicad
oriented (4G = 2 dG).

From this expression for dK we
the set of segments of length I w
domain K of area F and perimeter
of the chord determined by G on k

mS;SNK=0) =2 [dpdod

= 27F 4+ 2IL

This formula can be generalized
cation was given by Green (22).

If we ask for the measure of th
contained in K, the result is not si
For instance, for g circle C of diam

m(8; 8 C C) = ’—2'(1rD2 — 2D

and for a rectangle R of sides a, b (
m(S; S C R) = 2(wab

An unsolved problem is that
domains K with a given perimet
measure m(S; 8 C K) of the segn
are contained in K. For [ = 0 th
perimetric problem and the solutio:

The preceding very simple exam:
constitute the so-called integral gé
Blaschke (3): (1) definition of a
objects with certain properties of
this measure for some particular ¢
obtained result to get some statem
The same examples show the bas
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and consequently, up to the sign, we have dz A dy A da =

. dp A d6 A di. We may then write
" (1.13) dK = dG A dt

. where we write G in order to indicate that G must be considered as
2 oriented (dG = 2 dG).

From this expression for dK we easily deduce the measure of

/" the set of segments of length ! which intersect a given convex
f . domain K of area F and perimeter L. In fact, calling A the length
f ¢ of the chord determined by G on K, we have

m&snx¢m=2[@wm=2 [ O+ 1) dpds

SNk o
= 27F + 2IL,
This formula can be generalized to surfaces [see (55)]; an appli-

i cation was given by Green (22).

If we ask for the measure of the set of segments S which are
contained in K, the result is not simple; it depends largely on K.
For instance, for a circle C of diameter D 2 I, we have

m(S;8SCC) = Z—;(wD2 — 2D%arc sin% —2lvD: — l’)

and for a rectangle R of sides a, b (a 2 I, b = 1), we have
m(S; S C R) = 2(wab — 2(a + b)l + 12).

An unsolved problem is that of finding among all convex
domains K with a given perimeter those which maximize the
measure m(S; 8 C K) of the segments of a given length which
are contained in K. For I = 0 the problem is the classical iso-
perimetric problem and the solution is well-known to be the circle.

The preceding very simple examples show the three steps which
constitute the so-called integral geometry in the original sense of
Blaschke (3): (1) definition of a measure for sets of geometric
objects with certain properties of invariance; (2) evaluation of
this measure for some particular sets; and (3) application of the
obtained result to get some statements of geometrical interest.

The same examples show the basic elements which are necessary

I 4
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to build the integral geometry from & general point of view:
(1) a base space E in which the objects we consider are imbedded ;
(in the preceding examples, E was the euclidean plane Es); (2? a Iﬂ
group of transformations ® operating on E (iq t,he' precedl.ng i
examples & was I; (3) geometric objects F contained in E which
transform transitively by ® (in the preceding examples, the geo-
metric objects were points, lines or congruent figures).

Given E, ®, and F, the first problem of the integral geometry
is to find & measure for sets of F invariant under ©.

2. GENERAL INTEGRAL GEOMETRY

2.1. Density and measure for groups of matrices. Though the
integral geometry deals with general Lie groups, fr9m the geo-
metrical point of view in which we are principally interested it s
suffices to consider Lie groups which admit a faithful representa- ..\
tion, that is, which are isomorphic to & matrix group. We .negd
some facts about groups of matrices, which we shall compile in
this section. For a more general treatment, see Chevalley (12)._ '

Let ® be a group of n X n matrices of dimension r, that 18
each matrix « € ® depends on r independent paraxr}eters o
as, -+ +, ar; More precisely, each matrix u € © is det.ermqled by 8
point @ = (a1, 63, ** -, ar) Of & differentiable manifold of dlmenslon_-kw‘
r, which we shall denote by the same letter ®; ay, as, * - -, Grare then. i
the coordinates of @ in a suitable local coordinate system. :

Let ¢ € ® be the unit matrix and »~! the inverse <_>f u€O. If..‘:)x
du denotes the differential of the matrix u, the equation p

2.1) wu+du) =eto

;

wi; of » have the form wy = aipdor + - + aijr da,, Where m‘ '.
coefficients a.;z are analytic functions of ay, as, - - A
n? pfaffian forms w;s there are r linearly independent (base of the
vector space dual of the tangent space of ®) which we
note by wi, ws, « + +, wr; they are called the forms of Maurer-Cartan
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of ® and are defined up to a lineas
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i, of ® and are defined up to & linear combination with constant
- coefficients,

The fundamental property of the matrix w is that of being left

i invariant under ®. For if 4’ = su (s is a fixed element of ®), we
- have du’ = sdu, and therefore o' = u'—'du’ = u-lgtsdy =
- wldy = w. ’

As a consequence, the r forms of Maurer-Cartan are also left
invariant under &, and this fact characterizes these forms up to a

. linear combination with constant coefficients. For a proof, we

observe that since the forms of Maurer-Carten w;, - -, w, are in-
dependent, each pfaffian form © may be written Q(q, da) =
21 Ai(a)w:. If Qis left invariant under &, we have

¥ = I Ai(a")wi = 2] Ai(a)ws
and since wf = w;, we have
21 (Ad) — Ada))w: = 0.
Because of the independence of w, it follows that A:(a’) = A:(a),
which implies A; = constant. (Since we are interested only in the
left invariance, we shall hereafter speak simply of invariance,
understanding that it means left invariance.)

Notice that by exterior differentiation of w = w~1du, taking -
into account that du=—! = —u! du u~!, we get

2.2) do = —ulduvutAdu= —w A w

This matric equation includes the expression of the exterior
differentials duw; of the forms of Maurer-Cartan as linear combina-
tions with constant coefficients of the products w; A w:; these
expressions are called the equations of structure of Maurer-Cartan
for the group ©.

2.2. Density and measure in homogeneous spaces. Let  be a
subgroup of & of dimension r — k. Suppose that © itself is a
Lie group isomorphic to a matrix group. We want to find the
conditions for the existence of a density (that is, an element of
volume) in the homogeneous space /9 (= set of left cosets s9,
8 € Q) invariant under ®. For this purpose, we notice that the
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submanifold § of the differentiable manifold ® and its left cosets
39 (8 € ©) are the integral manifolds of a pfaffian system.

(2.3) w =0, wp = 0, ceey wy = 0.

Because © and its left cosets as a whole are invariant under @,
the left side members of (2.3) will be linear combinations with
constant coefficients of the forms of Maurer-Cartan of @, and,
because these forms are defined up to a linear combination with
constant coefficients, we may assume that they are the h first
forms of Maurer-Cartan of ®.

" Because w; is invariant under &, the differential form

(2.4) Q,.=w1/\wz/\~~/\w;.

will be also invariant under ®. However, @, is not always a density
for ®/9 because its value can change when the points ¢ & ®@
displace on the manifolds . We shall now prove the following
theorem.

TaEOREM: A necessary and suffictent condition for Qu to be a
density for @/ is that its exterior differential vanish, that is,

(2.5) o, = 0.

Proof: To prove this theorem, we observe that the submanifold
9 and its left cosets fill up the manifold @ in such a way that for
each point of & passes one and only one submanifold. Thus, the
system (2.3) is completely integrable and it is consequently equiv-
alent to a system of the form

(2.6) db = 0, d& = 0, RN d& = 0,

where ¢; = ¢£i(ay, az, - -+, a,) are functions of a; such that the mani-
folds s are represented by ¢; = constant (: = 1, 2, ---, h). We
can make in ® the change of local coordinates (ai, as, - - -, ar)
— (&, &y -+, Eny Tag, -+ +, Zr). Since the systems (2.3) and (2.6) are
equivalent, we have

2.7) W=AE 2)dE AdEa A <+ A db,

where A(¢, z) denotes a function of &, - - -, &, Zs, + -+, Z,. When
the point a(ty, &, - - -, £, Zasy, - - -, Z,) varies on 89, the coordinates
&, are constant, and, therefore,
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2.8) = 2 AaAduA - Adh
j=h+10%T;

On the other side, by exterior differentiation of (2.7), we get
b 9A

do, =
" i§1 9¢;

SRR A

Sy

dE; NdEL A+ A dés

S BRI S

3 A nda A e A dly = o0,
j=h+10Z;

SPRZEee

Bar

because the first sum vanishes. Consequently, so that 50, = 0—
that is, for Q4 to be invariant by displacements on the manifolds
89D, it is necessary and sufficient that dQ, = 0. This proves the
theorem,

=SSN

Crag

If © reduces to the identity, then &/ = ® and @, = w; A
wz A ++- A w, gives the invariant density (= element of volume)
of ®, which in integral geometry takes the name of kinematic
density of ®. The integral of Q, gives an invariant measure for @

i,

(Haar’s measure) which is unique up to a constant factor.

2.3. The examples of the introduction. To exemplify these gen-
eral results, we shall consider the examples appearing in the
introduction.

The group of motions @ = M in E; can be represented by the
group of 3-dimensional matrices,

cose —sineg a
(2.9) u =|{sin ¢ cosg b

with the parameters a, = a, a; = b, as = ¢. We have

cosS¢ sing —bsineg —acose
ul=|—sing cos¢e —bcecos¢g+ asing

0 0 1

T

D e T

—sin ¢dp —cosedy da
du = cosedy —sin ¢ode db

e

0 . 0 0

EET

o
E

LSS

and, therefore,

P
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[0 —~do cosegda+ sin pdd
w=yldy =|de 0 —singpda-+cosedh
0 0 0
The forms of Maurer-Cartan are
(2.10)
w; =cospda+singdh, w = —singda+ cosepdh, w = dp,
and the equations of structure
0 0 —ws Auws
do=—wAw=-—{0 0 wy A w )
00 0
That is,

2.11) duw = —ws A wy, dws = —wy A wy, dwy = 0.
The kinematic density of I is
dK = w1 A w3 A w3 = da A db A dg,

which, up to the notation, coincides with (1.11).

Let $; be the subgroup of M consisting of all motions which
leave the line G(p, 6) invariant (equation of G:z cos 6 + y sin § —
p = 0). There is a bijective mapping between the lines G of E;
and the points of the space MM/H;. As density for lines, we take
the density of M/DH,.

By the change of coordinates (g, b, ¢) — (p, 6, t) in M, given by
the equations,

a =pcosf -+ ¢ sind, b=psind — ¢ cosé, =10 —

p=acosf+bsing, t=asin6d—bcoss 6 =¢+§,

the points of P/ H: are p = constant, § = constant. The system
(2.6) isdp = 0, d8 = 0, and the system (2.3) is

dp = cosfda+sinfdb= —singda+cosepdb=uw =0,
dd =dp = w3 = 0. .
Therefore, the density for lines takes the form
(212) dG = ws A wy = —singda A do + ¢cos o db A de
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which is equivalent to
(2.13) d@ = dp A db,
as stated in (1.7).

If §, is the subgroup of M consisting of all motions which leave
the point P(a, b) invariant, there is a bijective mapping between
the points (g, b) of E; and the points of the homogeneous space
M/Do. The system (2.8) is now da = 0, db = 0, and (2.3) gives
w1 = 0, wg = 0. The density (2.4) for points results in
(214) dP = wy A ws =da A db,
which coincides with (1.4). In both cases (2.13) and (2.14), the
condition (2.5) is obviously satisfied.

To give an example in which the homogeneous space &/9 has
not an invariant density, let us consider the 4-dimensional group
® of matrices of the form

Qay 0 as
u=|0 ag ), a;as;ﬁO,

0 0 1
and the 2-dimensional subgroup § of matrices of the form

0 0 1
To obtain the forms of Maurer-Cartan of ®, we have

ar! 0 —ailas\ /day, 0 das
w=uldu=1{0 a7 —ai'as )10 das das

[1)] 0 0
wu=|0 a 0) aas0.

0O 0 1 o 0 O

w1 0 we
=10 wsg w4 |,
0 0 O

- - - — -1
wr = dq 1 dal, wy = A ! daz, ws = a3 1 da4, ws = a3 ' das

The subgroup 9 is characterized by as = 0, as = 0, 311d} there-
fore, the system (2.3) is now ws = 0, ws = 0. The differential form

where
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@ = ws A w4 is not a density, because d2 = —w A w A wg —
w3 A w2 A wy 0.

3. INTEGRAL GEOMETRY IN THE
THREE-DIMENSIONAL EUCLIDEAN SPACE

3.1. The group of motions in E;. We shall consider in detail the
integral geometry of the 3-dimensional euclidean space. The base
space is Ey and the group ® is the group of motions I in it.

Let z represent the one-column matrix formed by the orthogonal
coordinates z,, s, z; of a point P. The matrix equation of a mo-
tion x — 2’ is
3.1) 2’ = Az + B,

where

an iz Qi3 b,
(3.2) A=\|an axr an}, B=|b)
s Qg2 Osg bs

and A satisfies the conditions of orthogonality

(3.3) At = A"' (A* = transposed of 4).

The condition (3.3) reduces to 3 the number of independent
parameters a;; which, with by, bs, and bs, are the 6 parameters on
which It depends.

The group I can be represented by the 4 X 4 matrices,

3.4)

with the ordinary rules,
4; A, A:B, 4 B
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The matrix of Maurer-Cartan is
A-'dA : A~'dB

w=uldy =

If we introduce the two matrices
3.5) wa=A"1dA, wp=A"1dB
of order 3 X 3 and 3 X 1, respectively, the equations of structure
can be written .
(3.6) dws = —wa A w4, dwg = —wa4 A\ ws.

Since IN is a 6-parameter group, we must have 6 pfaffian forms
of Maurer-Cartan. Effectively, from (3.3) and (3.5) we deduce
wa = A'dA = —dA* A = —u, and the 6 forms are the elements
of the matrices,

0 W, w3 bt
W= —wz 0wy, wg=|®1,
—w; Wy 0 “s

which, explicitly, give
3 3
3.7 Wip = —Why = _21 aji daj, w; = _21 aj; db;.
J= i=
It is useful to give a more geometrical approach to the pfaffian
forms w., and w;. Let us consider in Ej; a fixed frame (Qo; €3, €3, €3)
composed of a point @, and three orthogonal unit vectors ¢f, and

a moving frame (Q; e, ¢, €s) which results from the fixed frame
by the motion u represented by (3.1). If we introduce the matrices

(3.8) e = (e, 63, 68), = (e,eye€s)
we can write

3.9) Q=¢"B, e=¢eA,
and, therefore,

dQ = ¢°dB = ¢ A~ dB = euws,
(3.10)

de = 0dA = e A~ dA = ewq,
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which may be written

3 3
3.11) dQ = '21 wie;, de; = _21 w;ie5.
i= i=

These formulas are useful for the computation of densities, as
we shall see in the next section. Because of the orthogonality of
the unit vectors e;, we have e.; = i;, and from (3.11) we deduce

(3.12) wj = €5 dQ, Wy = €5 de.-,
which are the vectorial form of the equations in (3.7).

3.2. The area element of the unit sphere. We need to remember
two expressions for the element of area of the unit sphere. Let »
be the unit vector with the components

(3.13) » = sin f cos ¢, ve = 8in 8 8in ¢, vy = COS §

where 6, ¢ are the ordinary spherical coordinates corresponding to
the endpoint of v. The area element at this endpoint is known
to be

(3.14) do = (vwv,)df A dp =sinf0do A do

where (v v v,) denotes the scalar triple product of the vectors
v, vs, and v, (subseripts denote partial derivation). Taking (3.13)
into account, we have also

(3.15) do = P3N _ v Adn _ dn A dny

151 Ve V3
and since »} + 3 + 1§ = 1, we deduce
do = vidvy A dvs + vadyvs A dvy + vadyy A dye.

On the other hand, if e, e;, and e; are the 3 orthogonal unit
vectors of & moving frame, we have

erdey A esdes = ei(ew df + eap dp) A ex(ess dO + €30 dop)
= (€1630- €263, — €1€30°€26s) B A do
= (e1 A ) (ew A €35) d8 A dop
= (egesese) 0 A do = do

where do denotes the area element of the unit sphere correspond-
ing to the endpoint of e;. From (3.12) and (3.16), we get

(3.16)




INTEGRAL GEOMETRY

(3.17) do = ung A wn.

We have now at our disposal all elements necessary to find the
densities for points, lines and planes of E, invariant under It

3.3. Density for points. Let ©o be the set of motions which
leave the point Q(by, bs, by) invariant; clearly it is a subgroup of
M. According to (3.11), to keep Q fixed we must have

w =0, wy =0, wy = 0,
which is the system (2.3), and, according to (2.4), the density
for points will be iy A ws A ws = dby A dby A dbs [applying (3.7)
and taking into account the determinant |a;| = 1, because the
matrix A = (a,;) is orthogonal]. In general, for the point P(z, y, 2),
we shall have
(3.18) dP = dx A dy A d.
The condition (2.5) is obviously satisfied.

3.4. Density for planes. Let O; be the set of motions which
leave the plane E(e,, es) invariant; clearly it is a subgroup of M.

By the motions of §: the unit vector e; remains fixed and the
point Q can only move on the plane e, e;; therefore, according to
(8.11), the pfaffian system which characterizes the planes is

wy = 0, wy = 0, wey = 0,
and the density for planes results: _
(38.19) dE = ws A wis A\ was.

If 8, o are the spherical coordinates of the endpoint of e;, (3.14)
and (3.17) give

(3.20) wis A o = do = 8in 6d8 A de.

If p is the distance from the origin Qo of the fixed frame to the
plane E, and aj; = sin § cos ¢, as = sin 6 sin ¢, ag = cos§ are
the components of e; (normal to E), we have p = ayb, + aaubs +
asbs, and, according to (3.7),

8
(3.21) w = T andb; = dp+ Rdf+ Sdo.
,-
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Here, R, S are functions of 9, ¢, b, the explicit form of which has
no interest for us. From (3.19) and (3.20) we get

(3.22) dE = sin8dp A d8 A de = dp A do.

The condition (2.5) is obviously satisfied, and hence we have:
If a plane E is determined by its normal ¢; and its distance p to a
fixed origin, the density is given by (3.22), where do denotes the
area element of the unit sphere corresponding to the endpoint
of the unit vector e;.

As an exercise, prove that if the plane is given by the equation

uz + vy 4+ wz + 1 = 0, its density takes the form
_ duAdv Adw
dE = (uf + v + wz):‘

Example

Let S be a fixed segment of length I. To compute the measure
of the set of planes E which intersect S, we take S on the e3-axis and
the middle point of S as the origin of coordinates. Then we have

(323) m(E;ENS =0) = [ dE
ENS#=0

=% 02'd¢[)'[cosa| sin § df = =l.

If T is a polygonal line of length L, writing (3.23) for all sides
of I and adding, we obtain

(3.24) [ ndE =L,

where n denotes the number of interseetion points of E with I.
By a limit process it is not difficult to prove that (3.24) holds for
any rectifiable curve. The integral in (3.24) is extended over all
planes of E;, n being O for the planes which do not intersect I

3.5. Density for straight lines. Let §, be the set of motions
leaving the line G which contains the unit vector e; invariant;
clearly . is a subgroup of M.

By a motion of $,, the point Q@ can only move in the direction
of e, and, therefore, (3.11) gives «, = 0, ws = 0. Moreover, be-
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cause ey is fixed, from (8.11) we deduce wis = 0, wss = 0. The
pfaffian system (2.3) for the lines of E; becomes

(3.25) w = 0, we = 0, wig = 0, w3y = 0,
and the density for lines is
(3.26) dG = wy A w3 A o3 A wa.

According to (3.12), w; A ws equals the area element of the
plane (e;, e2) at the point @, and we have seen that wis A we i8
the area element of the unit sphere corresponding to the endpoint
of es, that is, to the direction of G. If G is determined by its direc-
tion ¢; and its intersection point (z, ¥) with a fixed plane, denoting
by ¢ the angle between ¢; and the normal to the fixed plane, we
have wi A ws = |cosy| dz A dy, and we can write (3.26) in the
form

(3.27) dG = |cos¢| dz A dy A do.

From (3.26) and (3.6) it is easy to show that the condition (2.5)
is satisfied.

As an exercise, prove that if G is given by the equations ¢ =
az 4+ p, y = bz + g, then its density is

dG:da/\db/\dpAdq.
@+ o T b

Example

Let = be a fixed surface of class C! (= with a continuous tangent
plane). If P denotes a point of the intersection G M = and df
denotes the area element of = at P, the density for lines can be
written d@ = |cos | df A do, where ¢ denotes the angle between
G and the normal to = at P. Fixed P, the integral of |cos¢| do
extended over all the lines which pass through P, gives the projec-
tion of one-half the unit sphere upon a diametral plane—that is, .
The integration of df over the whole = gives the area F of Z. There-
fore, taking into account that each line has been counted as many
times n as it has intersection points with =, we get

(3.28) [ ndG = =F,
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where the integral is extended over all lines of Ejy, n being 0 for
the lines which do not intersect =.

3.6. Kinematic density. The kinematic density is
(3.29) dK = on A w3 A ws A wis A wns A wa.

To give a geometrical interpretation to wis = e, des, we observe
that if we take on the plane e, ¢; two fixed orthogonal unit vectors
ef, e and call o the angle between ¢; and e, we can write ¢ =
cosa el + sinael, es = —sin o e} + cos a e3; therefore, e, dey =
—da. That is, w3 means an elementary rotation about the es-axis.
Consequently, according to (3.17) and (3.29), if a motion is deter-
mined by the position of the moving frame (Q; ei, es, ¢5), the kine-
matic density has the form

(3.30) dK = dP A do A da, -

where dP is the volume element of Ej; at the origin @ of the moving
frame, do is the area element of the unit sphere corresponding to
the endpoint of e;, and da is the element of rotation about e,.
We remember that we always consider the densities in absolute
value; thus, there is no question of sign.

Let us do an application of (3.30). Let I'" be a fixed curve with
continuous tangent at every point and finite length L and let =
be a moving surface of class C*! and finite area F. Let @ be a point
of I' N T and let ¢; be the normal to = at Q. If 6 denotes the angle
between e; and the tangent to T at @ (which we may take as the
e-axis of the fixed frame) and df denotes the area element of =
at Q, we have dP = |cos 8| df A ds (s = arc length of T'). Putting
this value in (3.30) and integrating over all the positions of Z in
which it has common point with T, because each position of 2
will be counted as many times » as intersection points have Z
and T, we get

(3.31) f ndK = 4x°FL.

Notice that the same formula holds if we suppose Z fixed and T'
moving with density dK.

If = is the unit sphere, we can take the origin of the moving
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frame at the center of Z; then we have [ ndK = 8xn? / n dP, and
. (3.31) gives

(3.32) f ndP = 2rL,

¥ which is valid for any rectifiable curve (51).

8.7, A differential formula. In Section 5 we will need an im-
. portant auxiliary formula which derives from (3.30). Let 2, be a
. fixed surface of class C1. At each point Q of =, we consider an
i orthogonal frame (Q; ¢}, €3, €3) with origin at @ and with e§ normal

: k . t0 Zo. If the displacement vector on 2 at Q i8 wie} -+ wsef, the area
. element is df = wy A ws. To the unit vector e° tangent to Z, at

; which forms with ¢f the angle 7, is attached the differential form

B QLo = w1 A wn A dro called the density for line elements (; ¢?) on

¢ Zo, and the pfaffian form ds = cos 7o wy + sin 7o wy called the ele-
{ ment of length corresponding to the direction e°.

" Now let =; be a moving surface of class !, and assume that
" the intersection =, M Z, is a rectifiable curve I'. Let @ be a point
" of I and (Q; ey, ¢s, es) be an orthogonal frame with e; perpendicular
to 21 Let ds be the length element of T at Q and dso, ds, those
normal to I' on 2 and 24, respectively. Let 6 be the angle between
the normals e, es. If dfs, df are the elements of area of Zo, Z; at Q
and dP denotes the element of volume of E; at @, we have dP =
sin 8 dfo A ds; and dfy = ds A ds. The element of area of the
unit sphere at the endpoint of ¢; may be written do = sin8df A dro.
Putting now dr, = da to unify the notation of (3.30), from this
equation and the preceding relation, we deduce immediately (up
to the sign)

(3.33) ds A dK = sin?0dfy A dry A dfy A dry A d8
= 8in? 0 dLo A dL, A d8,

which is the differential formula we want.
An immediate consequence is obtained by integrating both
sides over all positions of the moving surface Z;. We get

(3.34) [ LdK = 2°FoF,,
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where L denotes the length of the curve Z, N Z,, and F,, F, are
the areas of Z,, Z,, respectively.

If Z, is the unit sphere and we take the origin of the moving
frame at the center of Z,, we have

[LdK = 81r2[LdP;
and (3.34) gives
(3.35) [ LdP = n*F,.

3.8. A definition of area. Let now Z;, Z; be two moving unit
spheres and X, a fixed surface. Let N be the number of points
of the intersection Ty M Z1 N 2. If dP; denotes the volume ele-
ment at the center of Z; (¢ = 1, 2), we get from (3.32) and (3.35)

[ N dP,dP; = 2« [ L dP, = 21°F,.

Conversely, this result conduces to define the area of a con-
tinuum of points by the formula

Fo = % [ ¥ ap.ap,

provided the integral of the right-hand side exists [see (52)].
Applications of the integral geometry to the definition of area
for k-dimensional surfaces have been made by Federer (17-19)
and Hadwiger (23) and (25). See also Nobeling (45) and (46).

3.9. Planes through a fized point. Let us now consider the set
of planes E, which pass through a fixed point 0. The density for
sets of E, invariant under the group My of the rotations about 0,
is clearly dEy, = do, where do denotes the area element of the unit
sphere corresponding to the direction perpendicular to E,. In fact,
this differential form is invariant under 9, and, because of the
transitivity of the planes E, with respect to I, it is unique up
to a constant factor. The planes E, are considered non-oriented;
therefore, the measure of all the planes through O will be

(3.36) j dE, = L , do = 2m,
where 3Z denotes the half of the unit sphere.
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Let S be a fixed arc of great circle on the unit sphere of center O
of length «. The measure of the set of planes E, which intersect
S (= measure of the set of great circles which intersect S) will be
the area of the lune bounded by the great circles the poles of
which are the endpoints of S—that is, m(Ey; S N E; 7% 0) = 2a.
If instead of S we have a spherical polygonal line T the sides of
which have the lengths o, we have, writing the last formula for
each side and adding,

(3.37) [ ndEy = 2L,

where L denotes the total length of I'. The integration is extended
over all (non-oriented) planes through O—that is, according to
dEy = do, over half the unit sphere. By a limit process we can
prove that (3.37) holds for any rectifiable spherical curve of the
unit sphere.

Following Fenchel (20), we want to apply (3.37). Let K be a
closed space curve of class C? without multiple points and let T
be the spherical indicatrix of it (= the curve T = T(s), where T
is the tangent unit vector to K). The arc length element of I is
ds; = |x| ds, where x denotes the curvature and s the length of K.
Consequently, (3.37) yields

(3.38) f ndBy = 2 fK [x| ds.

Every closed space curve K has at least 2 tangents which are
parallel to an arbitrary plane. This means that every plane E,
intersects T' in at least 2 points. Hence, n = 2, and (3.36) and
(3.38) give

(3.39) L x| ds = 2,

a classical inequality of Fenchel.

If K is knotted, it is easy to see that it has at least 4 tangents
parallel to an arbitrary plane. Hence, n 2 4, and (3.36) and (3.38)
give the following inequality of Féry (for knotted curves) (16),

(3.40) /K x| ds 2 4.
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These results have been generalized to closed varieties in E, by
Chern and Lashof (11).

4. APPLICATIONS TO CONVEX BODIES

The integral geometry is closely related to the theory of convex
bodies. We compile in this section some simple facts on this theory
from many sources—for example, Bonnesen and Fenchel (4),
Busemann (5), Hadwiger (24), and Vincensini (72).

Let k be a plane convex set of area f placed in E;. Let f, be
the area of the orthogonal projection of % on a plane perpendicular
to the direction ¢, and let 6 be the angle between ¢ and the normal
to the plane which contains k; we have f, = [cos 8] f. If do denotes
the area element of the unit sphere Z corresponding to the direc-
tion ¢, we have

(4.1) [z fode =f A" de ﬁ, |cos 6] sin 6 d§ = 2xf,

and, therefore,

4.2) - % [, 5. do.

Now let K be a convex body of E;; we shall denote by aK the
convex surface bounding K. Let F be the area of 0K and F, the
area of the orthogonal projection of K on a plane perpendicular
to the direction ¢. Applying (4.2) to each element of area of 4K
and integrating over all 0K, we get

1
(4.3) F=> [, F. do,

known as Cauchy’s formula for the area of a convex body.

Let O be an interior point of K and p = p(¢) = p(8, ¢) be the
supporting function of K with respect to O (= distance from O to
the supporting plane perpendicular to the direction ¢ of spherical
coordinates 8, ¢). The convex body K, parallel to K at distance h
has the supporting function p» = p(s) + k, and if R,, R; are the
principal radii of curvature of 3K, those of 3K, at corresponding
points are R; + h and R; + h. Between the area element df of
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dK and the area element do of its spherical image, there is the
relation df/de = R,R,, and consequently, we have
4.4) F= [, Rifado.

Applying this formula to dK,, we get
45) Fr= [z (Ry + h)(Ra + h) do = F + 2Mh + 4xh3,

where
1 1 1 1
@) M=jfR+Ryde=3[ (+5)

is the integral of mean curvature of dK. If V denotes the volume
of K and V) that of K, from (4.5) we deduce

@n  Va=V+ [ Fadh =V + Fh+ MR + b,

which is the so-called Steiner’s formula for parallel convex bodies
in Es.

For plane convex sets, the formula analogous to (4.7) is
(4.8) fr=7+ uh + wh?,

where 4 = length of dk. Applying (4.8) to the orthogonal projec-
tion of X on a plane perpendicular to the direction ¢, we have

Fv.h = Fv + “ch + 'ﬂ'h’p
and by Cauchy’s formula,

1 1 h
“49) Fp= ;IZF.,Ada=;/ZF,da+1—r/zu,dv+4wh’.

Comparing (4.9) with (4.5), we get (since both formulas hold
for any k)

1
(4.10) M=£me

which is a very useful expression for the integral of mean curvature
of the boundary of a convex body.

On the other side, considering the volume V of K as & sum of
pyramids with the common vertex O, we have
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(4.11) V=§[’Kpdf=§fszszdo.
Applying this formula to K,, we get

V=1 @+ HEA+ DR+ do

-V 4+ g [; ®:Bs + p(By + Ry)) do

2
+%—/z(p+R1+R2)da+%1rh'.
Comparison with (4.7) yields
412) F= %/Zp(Rl +R)ds, M= /Zpda'.

The last formula allows definition of M for any convex body
without the conditions of regularity necessary to define the prin-
cipal radii of curvature of 3K. A practical way to compute M
for convex surfaces 0K not sufficiently smooth is to compute the
integral of mean curvature M, of the parallel surface 6K, (which
is smooth) and then to pass to the limit for A — 0. This method
yields the following results easily. (1) For a convex polyhedron
the edges of which have lengths a; and the corresponding dihedral
angles of which are a;, we have

M=43%3(r— aja.
(2) For a right cylinder of height & and radius r,
M = zh + =¥
(3) For a plane convex domain, considered as a flattened convex

body of Es, we have

k.
= -5 u,
where u is the length of the boundary of the domain.
Notice that, according to (3.22), the second formula (4.12)
gives the measure of the set of planes F which cut K—that is,
we have the formula
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(4.13) dE = M.

, ENK w0
On the other side, applying (3.28) to convex surfaces (n = 2),
we get

. (414) G =3F.

@NK 0
We may therefore state:

The volume V of a convex body K is the measure of the points
contatned in it; the area F of 0K is (up to the constant factor w/2)
the measure of the lines which intersect K; the integral of mean
curvature M s the measure of the planes which intersect K.

These integral geometric interpretations of V, F, and M have
been generalized to convex bodies of the n-dimensional euclidean
space [(60) and Hadwiger (23) and (25)].

5. THE KINEMATIC FUNDAMENTAL
FORMULA IN E,

5.1. The Euler characleristic of a domain. Let T be a closed
surface in E; which is of class C? and bounds a domain D of vol-
ume V. If df is the area element of £ and do the area element of
the corresponding spherical image, we know the formulas

do 1 1
om0 g = e
where R;, R, are the principal radii of curvature, 7(Z) denotes
the area of the spherical image of Z, and x = x(D) is the Euler
characteristic of D. Because Z is closed, its spherical image covers
the unit sphere an integer number of times, and therefore x =
I(Z)/4r is an integer. For example, for domains topologically
equivalent to the solid sphere, x = 1, and for domains which are
topologically equivalent to a torus, x = 0 [see, for example,
Struik (69, p. 159)].

If = is not of class C? but consists of a finite number of faces
(= pieces of class C?) which intersect along edges (= closed

(5.1)
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curves of class C?), the Euler characteristic is obtained adding
to the area of the spherical image of the faces (5.1) the area of the
spherical image corresponding to the edges, which we shall now
compute. Let T’ be an edge of £ and let T, N, B, denote its unit
vectors tangent, principal normal, and binormal; let s be the are
length of T'. If e, e; are the outward normal unit vectors to the
faces of > at the points of I' and we call 8,, 87 the angles which
they form with —N, the spherical image corresponding to I' is
the portion of unit sphere defined by the equation,

Y(s,0) = —cos8N +sindB (0, <6=<6,0=<ssL),

where L is the length of T.

Using Frenet’s formulas, we have Y3 =1, V,Y, = —7, V2 =
x?cos? 0 + 72, (Y3Y% — (Y,Ys)?)V2 = x cos §, where x and r are
the curvature and the torsion of I'. The area I(T') of the spherical
image corresponding to I’ will be

62) IT) = jr x cos 0 df ds = /r (sin 6, — sin 6;) xds.

Under the assumption that = has no vertices (= points in
which more than two different faces intersect), the Euler char-
acteristic of 2 is given by the second formula (5.1); we take into
account that at the left side, the integral analogous to (5.2) for
all the edges of = should be added.

5.2. The kinematic formula. Let Do, D, be two domains of E;
bounded respectively by the surfaces =, Z,, which we assume to
be of class C?. Let V;, x; be the volume and the Euler character-
istic of D; and let F,;, M, be the area and the integral of mean
curvature of Z; (z = 0, 1). Suppose Dy is fixed and D, is moving,
and let dK be the kinematic density for Di. If (Do M D,) denotes
a function of the intersection Dy M D, one of the main purposes
of the integral geometry is the evaluation of integrals of the type

(5.3) J = [ #(Do N Dy) dK

over all positions of D,. For example, if & = Vg = volume of
Dy N\ Dy, we can easily prove that / Va dK = 8x2V,V,, and if
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® = Fy is the area of the boundary of Do M Dy, the formula
j Fo dk = 8x2(VoF, + V1F,) holds (50). The most important case
corresponds to ® = x(Do M\ Dy) is the Euler characteristic of
Dy N D,. Surprisingly enough, the integral f x(Do N Dy) dK over

all positions of D, can be expressed by only V., x;, Fi, M; (i = 0, 1).
The result is the following:

(5.4) [ x(Do N\ Dy) dK = 822 (Voxs + Vixo) + 2 (FoMi + FiMo).

This result is the so-called kinematic fundamental formula, which
we shall now prove.

We need to compute x(Do N D). The boundary of Dy N\ Dy
consists in a part =y of Z, which is interior to D, and a part Zy
of 2, which is interior to D,. Both Zy and =y are of class C? and
are joined by an edge I' = Z, N Z,, composed of one or more
closed curves, of the boundary of Do M Dy. According to (5.1)
we will have

(5.5) 4ax(Do N\ Dy) = I(Zn) + I(210) + I(T),
and we can write

5.6) 4 [ (Do Dy dK = [ I(2w) dK
+ [ I(2u) dK + [ I(T) dK,

where the integrals are extended over all positions of D;.

The first two integrals on the right-hand side of (5.6) are easily
evaluated. Taking the first integral, let P be a pointof Z, M D,
and let dop denote the area element of the unit sphere at the
spherical image of P. By first fixing D, and then letting P vary
over Z¢ N Dy, we get

[ dop dK = j IZy) dK,
PEZNDy

and by first fixing P and then rotating D, about this point and
letting it vary over D, and Z,
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[ dop dK = f dor [ dK = 8mV, / dop
_P €ZoNh PEZ PED: PEZy

= 8xV1I(Z) = 327V 1xo.
Thus, we have

(6.7) j I(Z0) dK = 320'Vixe.

Similarly, by the evident invariance of the kinematic density
under the inversion of the motion, we have

(5.8) [ I(Zw) dK = 320V oxu.

It remains to evaluate the third integral in (5.6). Let @ be a
point of I'. By Meusnier’s theorem, if p is the radius of eurvature
of T and R, r are the radii of normal curvature of Z, and Z, in the
direction of the tangent to I' at @, we have

(5.9) p= Rcost = rcosb;

where 6y, 6] are the angles between the outward normals e, ¢; to
2o, 21 8t @ and the vector —N opposite to the principal normal N
of T at Q. Taking into account the identity

sin 0{ — sin 6, -
(5.10) cos 8] + cosb

and putting 8; — 6, = 0, we deduce from (5.9) and (5.10)

|
ta.n-2- (01 -_— Ox),

R 2

If 7o, 1 denote the angles between the tangent to I' at @ and
the first principal direction of 2, Z; at Q, by Euler's theorem
we have

(5.11) sin 8 — sin 6, = p (l + -1) tan L 6.

. .
.12) 1 cos®r , sin?n

E= R T R
where R,, R; are the principal radii of curvature of 2, and ry, s
are those of 2, at Q. By (5.2), (5.11), and (3.33) we have

6.18) [I0)aK = [ (25204 S r y o8ln y sintn)

Rg 121 re

tan 46 sin® 0 df, dro df, dr; d8,

g2 in?
co8* 71y + 8 1’1,

1 3
r 8] e
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where the limits of integration for the angles are
0§70§21r, O_S_n§21r, 0§0§‘I’.
Computing the integral in (5.13), we get

(5.14) j I(T) dK = 873 (FoM, + FiMo).

Adding (5.7), (5.8), and (5.14), and considering (5.6), we get the
desired result (5.4).

The formula (5.4) is the work of Blaschke (3). It has been gen-
eralized to E, by Chern (8). For the generalization to spaces of
constant curvature (noneuclidean geometry) see Wu (76) and
(54), (67), and (58). For another kind of proof valid for more
general domains than those considered here, see Hadwiger (23).

Notice that if Do, D, are convex bodies, we have x(Do) =
x(D) = x(DeN D)) =1if DoN Dy 70, and x(Dy N D)) =0,
if Do N D1 = 0. The formula (5.4) yields

(5.15) [ dK = 8x2(Vo + V1) + 2x(FoMy + FiMy),

Do ND1#40

which gives the measure of the set of congruent convex bodies D,
having a common point with a fixed convex body D,.
If D, is a sphere of radius r, we can take the origin of the moving

frame. at the center of D;; then we have [ dK = 8x f dP, and
(5.15) gives

/ dP = Vo + For + Mg? + $ar%,

the Steiner’s formula (4.7).

6. INTEGRAL GEOMETRY IN COMPLEX SPACES

6.1. Theunitary group. The integral geometry of complex spaces
has not been developed very much, and it deserves further study.
We shall give a simple typical example.

Let P, be the n-dimensional complex projective space with
the homogeneous coordinates z;(t = 0,1, ---,n), so that z =
(20, 21, 22, * * *, z2) DA Az = (Azo, A2y, - - -, A2z,,), Where )\ is a nonzero




332 L. A. Santalo

complex number; define the same point. Let 2; denote the complex
conjugate of z. We assume the homogeneous coordinates z; are
normalized so that

6.1) () = %242.' =1,

which determine 2 up to a factor of the form exp (¢a).

We consider the group U (unitary group) of linear transforma-
tions
6.2) ? = Az
which leaves the form (6.1) invariant. The matrices 4 satisfy
(6.3) AA*=E, A-*=24ty A‘A=E,
where E is the unit matrix. These relations show that I depends
upon (n 4+ 1)? real parameters. If we interpret the elements
an (h =0,1,---,n) of the matrix A as the homogeneous co-
ordinates of a point ax € P,, the conditions (6.3) give
(6.4) (aBs) = oga,
which show that the points a; are normalized; they form the
vertices of an autoconjugate n-simplex with respect to the quadric
(22) = 0. Because a, and a;exp (tax) are the same geometric
point, to determine an element w € U we must give the n + 1
geometric points a. [with the conditions of (6.4)], as well as the
n + 1 real parameters a;.

The invariant matrix of Maurer-Cartan is
6.5) w= A"1dA = A*dA4,
which satisfies, in consequence of (6.3),
(6.6) w+at =0,
The invariant pfaffian forms are

6.7 Wi = é:o ; dan. = (3; das),

and (6.6) gives
(6.8) wie + @ = 0.
The kinematic density of U, up to a constant factor, is
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6.9) du=Mopdplloml j<h 05jkhsn,
where the product is exterior.

We have all necessary elements for .Qshe study of the integral

geometry of the unitary group. We shall restrict ourselves to the
case n = 2 (complex projective plane),

6.2. Meromorphic curves. A complex Wnalytic mapping E, — P,
of the complex euclidean line E, into the complex projective plane
P, defines a meromorphic curve in the sange of J. Weyl, H. Weyl
(75), and L. Ahlfors (1); it is defined by three analytie functions
z; = 2i(f), (1 =0,1,2). Every such ourve I has an invariant
integral with respect to U, which we whall call the order of T.
When the homogeneous coordinates ¢, are normaliged such that
the condition (6.1) is satisfied, the ordar of T is defined by the

following integral (up to the sign which depends upon the orienta-
tion assumed for T'),

(6.10) - % fin

where i = vV —1 and
(6.11) Q@ = [dzdz] = dzo A dZ + dzy A A%, + dzy A 25,

If T is an algebraic curve, we shall 8es (hat J coineides with its
ordinary order or grad.

If the coordinates z: are not normalizng , we set Z, = z;/(22)"2
and an easy calculation gives T ’

(6.12) Q = [dZ dZ] = %ﬂ' A d

wh ! i
ere z A 2 deno,tes the’ vector with the components 22
2920 — 2023, nd 2o21 — 2120.

For some purposes, it is convenient t write g in another form.
Let ¢ be a point on the tangent to I' at the point z such that

(6.13) (@) =1 (%) =0,
We will have (since ¢ is on the tangent t,, at z),
(6.14) dz = az + B, =242

'4
— 2921,
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where a, 8 are the pfaffian forms

(6.15) a = (2dz), B = (€dz).

From (6.13) and (6.14), we deduce

(6.16) Q=[dzdzl =aAa+BAGB

and because @ = —&, we have a A & = 0. Therefore,
(6.17) Q=8AB=(8d2) A (cd2),

a formula which will be useful in the following discussion.

As an application, we shall use (6.17) to obtain the order of a
complex straight line. Since J is invariant by unitary transforma-
tions and any line can be transformed into the axis z, = 0, it
suffices to compute the order in this case. We take, in order to
satisfy (6.1) and (6.13),

Z = (pe”(l + pz)_l/z, 0, (1 + 92)_"2))
¢ = (—e*(L + 77,0, p(1 + p1)11),
and we get

1y _ _dp+ipde _ _dp—ipdyp
(€dz) = Ti.2 (cdz) = ¥

and

2ip
T+
The order of the segmenta < p £ 5,0 £ ¢ < 27 will be

1o 2ip _ b—a
T=5al b aimded = arama T

(6.18) Q= (Ed2) A (cd2) = do A dp.

Fora = 0, b = =, we obtain J = 1, which is the order of a line.

6.3. A generalization of the theorem of Bezout. Let Ty, Ty be two
meromorphic curves of P; of orders J;, J2, respectively. Letul;be
the transform of I' by » € U. In the theory of meromorphic
curves it is important to determine the difference bztween the
product J1J; and the number N(T; N ul';) of points of intersection
of T, and ul, each counted with its proper multiplicity [Ahlfors
(1), Chern (9) and (10), and H. Weyl (75)].
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Our goal is more simple. We wish to obtain the mean value of
N(T'y N uTy) for all w € U. First, we will compute the integral

(6.19) 1= A N(T: N uTy) du

where the element of volume du is given by (6.9). In our case,
n = 2, making use of (6.8), and considering only the absolute
value, we have

(6.20) du = (Goday) A (01 dao) A (T das) A (8zdao) A (G das)
A (@ da)) A (@ das) A (Giday) A (3, das).

Inasmuch as we are only interested in the transformations
such that I'y N uT; £ 0, we may choose the points ay, a1, and a,,
which determine u, so that: ao = point of I'y M uT:; @, = point on
the tangent to uT; at ap; a, is then determined by the relations
(6.4), which we now write

(6.21) (aofle) = (a:ih) = (asta) = 1, (aolh) = (acls) = (a:82) = 0.

Let s be the point in which the line determined by a,, as intersects
the tangent to I'; at a;. We shall have

(5.22) (s3) =1, (st) = 0, (3a0) = 0.

Acvcording to (6.17), the differential form which gives the order of
uI‘g i8

(6.23) 2 = (G1dao) A (81 dGo) = (Go dar) A (G2 da).

Since we slways take ao on T4, we have dao = aay + Bs, where
a = (G dag), B = (8 dag). Consequently, we have

(@1 dao). = B(@:8), (a2 dilo) = B(asd),
and, by exterior multiplication,
(6.24) (8;dao) A (az ddo) = (Godas) A (@ dao)
= (B A B)(@s)(a:3) = (8:8)(a:®),

where @, is the differential form which gives the order of I';.
From (6.20), (6.23), and (6.24), we have

(6.25) du = Qs A 0(a:8)(as8) A (@1 das) A (B2 day) A (8o dao)
A (@iday) A (82 das).
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We first keep fixed the geometric points a, a1, and a;. With the nor-
malization (6.21), their homogeneous coordinates ax; (k = 0, 1, 2)
are determined up to an exponential factor exp (ia;); the param-
eters a;j(j = 0,1,2) are variables in (6.25). Putting a; = a}
exp (ta;), we have da; = aji daj, (@;da;) = tdaj, and, conse-
quently, f (@;day) =27 (= 0,1,2).

‘From the right side of (6.25) it remains to evaluate (ay being
fixed) [ (@8)(a:8) (@ das) A (83 day), where @y, a; describe the line

(@2z) = 0 which contains the point s. We can assume, because of
the invariance of the integrand by unitary transformations, that
this line is the axis z; = 0. According to (6.18), we then have

(6.26) / (@1 das) A (82 dar) = Zl_--2i-—iep’_)’ dp d,

where we have put a; = (pe*(1 + p?)~V2, 0, (1 + p?)~12), @ =
(—e(l + p*)~12,0, p(1 + p*)~"/2). Takings = (0,0, 1), we obtain

(6.27) (@s) (as8) = I—J:T

and, therefore,

(628) [ (@5)(as8) @ dax) A (3 das)

. ® 2r 2‘l«p _ .
= /; j; 0TF 5 dp dp = mi.
From (6.25) and (6.28), we obtain the integral of du extended

over all u such that T; N ul’; # 0, each u counted N(I', N ul)
times. We get (up to the sign which is unessential),

(6.29) [u N1 O uTy) du = 32x871J5,

where J; and J; are the orders of I'; and I'y, respectively.
To obtain the mean value of N(I'y N ul':), we need the total
measure of . Taking for I'; and I'; two straight lines, we know

that J; = J» = 1 and N = 1; therefore (6.29) gives A du = 32r°
Consequently, the mean value of N is
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(6.30) N =Jvh

For algebraic curves, N is constant and (6.30) gives the classical
theorem of Bezout; therefore our result may be considered a
generalization of this theorem to meromorphic curves. For the
extension to analytic manifolds of P, see (56).

7. INTEGRAL GEOMETRY IN
RIEMANNIAN SPACES

7.1. Geodesics which intersect a fized surface. The methods of the
integral geometry can be also applied to Riemannian spaces,
mainly to spaces of constant curvature or other spaces which admit
a group of transformations into themselves. The case of surfaces
is simple and well known (55). Here, we want to consider the case
of 3-dimensional spaces.

Let R; be a 3-dimensional Riemannian space defined by ds® =
gi; dz; dz;, where the summation convention is adopted; 4, j are
summed from 1 to 3. Let us introduce the notations,

_oF
= oz,
where z{ = dz;/dt. As we know, a geodesic of R; is determined by
a point z; and a direction zi, which is equivalent to give z;, p;

(¢ =1, 2, 3). The density for sets of geodesics is defined by the
following exterior differential form, taken always in absolute value:

(7.2) dG = dp; A dza A dps A dzz + dps A dx; A dpy A da,

+ dp1 A dzy A dp, A dz.

The measure of a set of geodesics is the integral of dG extended
over the set. The density (7.2) is the second power of the differ-

7.1) F = (giziz))'?, Ps

3
ential invariant 21) dp; A dz;, which constitutes the invariant in-

tegral of Poincaré of the dynamics (6, pp. 19 and 78), and it therefore
possesses the following two properties of invariance: (1) it is in-
variant with respect to a change of coordinates in the space;
(2) it is invariant under displacements of the elements (z;, p.) on
the respective geodesic.
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To give a geometrical interpretation of dG, let us consider a fixed
surface = and a set of geodesics which intersect Z. Let G be such
a geodesic and P its intersection point with =. In a neighborhood
of P we may assume that the equation of Z is 23 = 0 and that the
coordinate system is orthogonal, that is, ds* = gy, d2? + g dz} +
gss dzg, and thus p; = gii(dz;/ds). If v; represents the cosine of the
angle between @ and the z,-coordinate curve at P, we have

Vg
oxy
To determine @ according to the second property of invariance

of dG@, we may choose its intersection point P with Z. At this

point we have z; = 0, dzs = 0, and, consequently, (7.2) takes the
form :

(74) dG@ = dp; Adz A dpz A dzs,
of, according to (7.3),
(7.5) d@ = Vigugudn A dzy A dv, A dzs.

On the other hand, to each set of direction cosines »,, »;, and », cor-
responds a point of the unit euclidean sphere and the area element
in it has the value (3.15)

Vi dZI..

(73) v;= gii(d??’ Pi = Vguvi, dps= Vgudv+

- dlﬂ /\ d%.

4]

(7.6) do

Hence, we have, in absolute value,
(7.7) dG = |cos ¢| do A df,

where ¢ is the angle between the tangent to G and the normal to Z
at P, and df = V/ alg—n dz; A dzs is the element of area Z at P.

Integrating over all geodesicas which intersect Z, on the left side
each geodesic is counted a number of times equal to the number n
of intersection points of G .and Z; on the right, the integral of
|cos ¢| do gives one-half the projection of the unit sphere upon a
diametral plane (= 7). Consequently, we get the integral formula

78 j ndG = =F,
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where F is the area of Z. This formula generalizes (3.28) to Rie-
mannian spaces.

7.2. Sets of geodesic segments. Let t be the arc length on the
geodesic G. From (7.7) we deduce

(7.9 dG A dt = |cos ¢| do A df A dL.

The product [cos ¢| df equals the projection of the are element dt
upon the normal to T at P; consequently, |[cos ¢| df A dt equals
the element of volume dP of the space at P, and (7.9) can be
written in the form,

(7.10) dG A dt = dP A do.

An oriented segment S of geodesic is determined either by G,
t (@ = geodesic which contains S; ¢t = abscissa on G of the origin
of S) or by P (= origin of 8) and the point of the unit euclidean
sphere which gives the direction of S. The two equivalent forms
(7.10) may therefore be taken as density for sets of segments of
geodesic lines.

For example, let us consider the set of oriented segments S with
the origin inside a fixed domain D. The integral of the left of (7.10)

gives 2 [ M\ d@G, where N denotes the length of the arc of G which

lies inside D (the factor 2 appears as a consequence that dG means
the density for non-oriented geodesic lines). The integral of the
right is equal to 4V, where V is the volume of D. Consequently,
we have the following integral formula

(7.11) [ A dG = 2V,

where the integral is extended over all geodesics which intersect D.

7.3. Some integral formulas for convex bodies in spaces of constant
curvature. Let By now be a 3-dimensional space of constant curva-
ture k. With respect to a system of geodesic polar coordinates,
it is known that the element of length can be written in the form

sin? \/Ep
k

where p denotes the geodesic distance from a fixed point (origin

(7.12) ds® = dp* + dr,
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of coordinates) and dr represents the length element of the
2-dimensional unit euclidean sphere. The volume element has the
form

k
where do denotes the element of area on the unit sphere.

Let Py, P; be two points in R; such that there is only one
geodesic G which unites them. Let p;, p2 be the abscissas on @ of
P, and P,. With respect to a system of geodesic polar coordinates
with the origin at P;, the element of volume dP; has the form

(7.13) dP = dp A do,

in2 —
(7.14) ap, = Ve — ol 4, p 4,

By exterior multiplication by dP;, we have, in consequence of
(7.10), :

(7.15)  dP; A dPy = ?L‘/"k'—”’—"—"" dor A dps A dG.

This formula is the work of Haimovici (27).

Let D be a convex domain of volume V (that is, it contains,
with each pair of its points, the arc of geodesic, assumed unique,
determined by them) and consider all the pairs P;, P, inside D.
The integral of the left side of (7.15) is equal to V2. If A denotes
the length of the arc of G which lies inside D, then by calculating
the integral of the right side we have

/:‘ ﬁ:‘ sin? V% lo2 — p1| dp1 dps = -;-()\’ - %sin’ \/E)\)
Hence, we have the integral formula
(7.16) % / (7@ - %s'm’ \/l—c)\) dG = 2V,

where the integral is extended over all geodesics which intersect D.
For the elliptic space (k = 1), this formula reduces to

(7.17) [ (M — sin? \) dG = 2V,
and for the hyperbolic space (k = —1),
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(7.18) j (sinh®\ — W) dG = 2V,

For the euclidean space (k = 0), passing to the limit for k — 0
in (7.16) we get

(7.19) [ MdG = 6V,

which is a formula of Herglotz [Blaschke (3)].

Formulas of this kind referring to convex figures in the plane or
to convex bodies in the euclidean space were first obtained by
Crofton (7), considered the creator of the integral geometry. A
great deal of them were given successively by several authors:
Lebesgue (34), Blaschke (3), Massoti Biggiogero (38—42). Paper
(38) contains an extensive bibliography.

The generalization to spaces of constant curvature is less known.
However for certain types of formulas, the treatment in elliptic
space is more satisfactory than that in euclidean space, owing to
the possibility of dualization. Let us consider the following ex-
amples.

In the elliptic 3-dimensional space, all geodesics are closed and
have the finite length =. The planes have finite area 2r. Since any
geodesic intersects a fixed plane in one and only one point, the
formula (7.8) gives the measure of the set of all geodesics of the
space:

(7.20) j 4G = 2.

Let D be a convex body of area F and volume V and let us con-
sider the set of geodesic segments of length » which intersect D.
The integral on the left of (7.10) extended over this set making
use of (7.8) for n = 2, has the value

(7.21) [agat=x[a6=FF,

and the integral on the right is
(7.22) j dP A do = 24V + [ & dP,
PED
where & denotes the solid angle under which D is seen from P
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(P exterior to D). From (7.21) and (7.22), we deduce the integral
formula
(7.23) [ ®dP = ywF — 24V,
PED

Let us now see which formula corresponds to (7.11) by duality.
Let M, F be the integral of mean curvature and the area of the
boundary of D. For the dual convex body D* it is known that we
have
(7.24) F* =4r —F, M*=M, V¥=nm2— M —V.

By duality to each straight line (geodesic) G' corresponds another
straight line G* and, hence, if we use (7.24), formula (7.11) gives

(r — ¢*) dG* = 2n(xt — M* — V%),

@ ND*=0

where ¢* denotes the angle between the two supporting planes of
D* through G* and the integral is extended over all geodesics G*
exterior to D*. Taking into account (7.20) and (7.8), and replacing
G* by G, we get the integral formula

(7.25) [ 9dG=2a(M+V)-iu?F,

GND=0

which has no analogue in the euclidean geometry.
Similarly, as dual of the formula (7.17), we have

@20 [ (¢ —sint ) dG = 2M + V) — juF,

@ND=0
where, as in (7.25), ¢ denotes the angle between the two supporting
planes of D through G and the integral is extended over all geo-
desics which do not intersect D. For the integral geometry in
spaces of constant curvature, see Petkantschin (48), and (53),
(54), and (59).

8. SUPPLEMENTARY REMARKS AND
BIBLIOGRAPHICAL NOTES

8.1. General integral geometry. The integral geometry has its
origin in the theory of geometrical probabilities [Crofton (13),
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Deltheil (14), and Herglotz (29), and it was widely developed by
Blaschke and his school in a series of papers quoted in Reference
(3). The inclusion of the methods and results of the integral
geometry within the framework of the theory of homogeneous
spaces (as we have done in Section 2) is the work of Weil (73) and
(74), and Chern (7). After their work, the measure theory in
groups and homogeneous spaces became of fundamental interest
in integral geometry. Every new result in that direction can be
applied and probably exploited with success to get integral geo-
metric statements; at least, it is sure that the integral geometry
constitutes the most abundant source of examples [Nachbin (44)
and Helgason (28, Chap. X)].

The inverse problem of finding a general formulation of certain
particular formulas of integral geometry (Crofton’s formulas) is
also an interesting one [Hermann (30) Legrady (36)]. A very
simple example follows. We have seen that the kinematic density
for the group of motions M of the plane is dK = dP A da (1.11).
From the point of view of the homogeneous spaces, dP is the
density of the space /My, where M, denotes the group of rota-

" tions about a fixed point and de is the density of My. If we write,
symbolically, dK = dt, dP = d(M/DM,), da = dM,, the formula
(1.11) gives d = d(M/D) A dINy, which induces us to ask if it
will hold for a general group ® and its subgroup g. In this particu-
lar example, it is well known that the formula d® = d(®/g) A dg,
in fact, holds for any locally compact topological group ® and any
closed subgroup g of ® [Weil (73, pp. 4245) and Ambrose (2)].

8.2. Sets of manifolds. Some problems of integral geometry may
also be presented under the following form. Let V denote a dif-
ferentiable manifold and F a family of submanifolds in it. First
we ask for the existence of a transformation group ® of V onto
itself which transforms the elements of F onto elements of F.
Then, if such a group exists, we ask for a measure of sets of
varieties of F invariant under ®. We shall give two simple ex-
amples.

Examples
1. Let V be the euclidean plane E; and F the family of all
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circles of it. The group ® is known to be the group of similitudes
8.1) 2’ =p(xcoseg — ysing) + a,
¥ = p(zsing + ycos o) + b,
which depends on ‘he 4 parameters a, b, p, and ¢. This group can
be represented by the group of matrices,
pCcoOsSy —psing a
u=|psine pcose b},
0 0 1
and by the method of Section (2.2), we find immediately that the
forms of Maurer-Cartan are

w1=‘-1£’ w = do, wa=cos<pda+sm¢db,
P 3 P

sin ¢
p
The similitudes which leave invariant a given circle are charac-

terized by a, b, p = constants, and, consequently, the system (2.3)

isw = 0, vy = 0, w; = 0. The density for sets of circles (of center

a, b and radius p) invariant under the group of similitudes results:

_daANdbAdo

B

2. Let V be the real projective plane and F the family of non-

degenerate conics in it. Then the group @ is the projective group
and the density for conics is (61),

dC=daoo/\dam/\daoz/\dau/\dau
3A?

where A = det (a;;) and the equation of the conic is assumed to be
anzi + 2002y + ony? + 200z + 201y + 1 = 0.

Other examples of this kind have been given by Stoka (63-68).
For sets of degenerate conics, see Luccioni (37).

Wy =

da + c°§“’db.

daC

8.3. Integral geometry of special groups. The metric (euclidean
and noneuclidean) integral geometry is the best known; however,
other cases have also been investigated. The integral geometry
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of the unimodular affine group of the euclidean space onto itself
leads to certain affine invariants for convex bodies (62). The in-
tegral geometry of the projective group has been considered by
Varga (70) and is pursued in (55} ; that of the symplectic group has
been studied by Legrady (35).

In the last years, Gelfand and his school have largely generalized
the ideas of the integral geometry and used them in problems of
group representation (21).
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