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INTEGRAL GEOMETRY 

;t L. A. Santalo 

1. INTRODUCTION 

We shall begin with three simple examples which will show the 
bàsic ideas on which integral geometry has been developed. 

1.1. Seta of points. Let X be a set of points in the euclidean 
plane Et. The measure (ordinary àrea) of X is defined by the 
integral 

(1.1) miX) = l^dxdy. 

Let 2)1 be the group of motions in Et. With respect to an or-
thogonal Cartesian system of coordinates, the equations of a 
motion u € iD2 are 

(1.2) 
x* =a ï COS <p — yeinip + a 

y' =: xsxa <p + y cos <p + b. 

The lundamental property of the measure (1.1) is that of being 
303 
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w\ 

uX is the transform of X by 

• P4 

m 

invariant under SD?. That is, if X' 
u, we have 

(1.3) m(Z') = ¿ , dx' dy' = ¿ dx dy = m(X) 

as follows immediately from (1.2). It is well known that this prop-
perty characterizes the measure (1.1) up to a constant factor. 

Because we are generally interested only in the differentifil fonn 
under the integral sign in (1.1), we shall write dP = dxdy, or, 
more precisely, 

(1.4) dP = dx A dy 

to indicate that the differential form under a múltiple integral sign 
is an exterior differential form [see, for example, Munroe (43)]. 

The exterior differential form (1.4) is called the density for 
points in Ei with respect to ÍDï. We shall always take the densities 
in absolute value. 

1.2. Sets of Unes. Let X now be a set of lines in Et—^for example, 
the set of all lines G which intersect a given convex domain K. We 
ask for a measure of X invariant under 3JÏ. 

Let p be the distance from the origin 0 to G and 6 the angle 
formed by the perpendicular to G through 0 and the i-axis. We 
maintain that this invariant measure is giveri by 

(1.5) m{X) = f^dpdd. 

For a proof, we observe that by the motion u [Relation (1.2)] 
the line coordinates p, 6 transform according to , 

(1.6) e' = e + <p, p' = p + acoa (e + <p) + bsm (d + <p) 

and putting X' = uX, we have 

m{X') = f^, dp' de' = f^ dp de = m(X) 

which proves the invariance of m{X). That this measure is umque, ^ff^) 
up to a constant factor, follows from the transitivity of the lines . • 'M 

under SDí, since if I f(p,e) dpdO is invariant we must have * i^^ 

fx,f{p',0')dp'de'= f^f(j),e)dpde, and, on the other hand, | ^ ; : 
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according to( 1.6), j^,f(p', 6') dp' dB' 

last two equalities, we obtain í /(?; 

If this equality holds for any set X i 
/(p, e), and, since any line G{p, e) 
other G{p', d') by a motion, we dedi 

The differential form 

(1.7) dG = dp / 

taken in absolute value, is called tl 
respect to ÍSI. 

Let us consider a simple applicati 
set of lines which cut a fíxed segmei 
invariance under SDï we may take tl 
dent with the middle point of <S and 
direction of S; then we have 

(1.8) m(G; (? n 5 pi 0) 
/ " 

ona 1̂ 0 
If instead of S we consider a po 

finite number of segments Si of Ien 
Si and summing we get 

(1.9) j ndG = 

where n = n(G) is the number of p 
and L is the length of T. The inte, 
all lines of the plane, n being 0 if G 
it is not difficult to prové that (1.9) 
[Blaschke (3)]. 

Conversely, given a continuum oi 
integral on the left of (1.9) has a n 
as a defínition for the length of r, 
length [Nòbeling (45)]. 

For a convex curve K we have n = 
except for the positions in which ( 
which are of zero measure. Conseqi 
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according to( 1.6), ¿,/(p',«') dp' dO' = ¿ / ( p ' , 0') dp de. From the 

last two equaUties, we obtain í f(p', 6') dp dS = í /(p, e) dp d$. 

If this equality holds for any set X it must be true that f{p', 6') = 
/(p, e), and, since any line G{p, 0) can be transformed into any 
other G{p', 0') by a motion, we deduce /(p, e) = constant. 

The differential form 

(1.7) dG = dp A de, 

taken in absolute value, is called the density for lines in Et with 
respect to 9K. 

Let us consider a simple application. To get the measure of the 
set of lines which cut a fíxed segment S of length I, because of the 
invariance imder 3Jl we may take the origin of coordinates coinci­
dent with the middle point of S and the x-axis coincident with the 
direction of S; then we have 

de = 21. (1.8) m(G;G D S ^ 0) = í dpdB = pl^coae 

If instead of S we consider a polygonal line T composed of a 
finite number of segments Si of lengths U, writing (1.8) for each 
Si and summing we get 

(1.9) f ndG = 2L 

where n = n(G) is the number of points in which G(p, 6) cuts r 
and L is the length of r. The integral in (1.9) is extended over 
all lines of the plane, n being O i f G n r = 0. Bya limit process 
it is not diflícult to prové that (1.9) holds for any rectifiable curve 
[Blaschke (3)]. 

Conversely, given a continuum of points r in the plane, if the 
integral on the left of (1.9) has a meaning, then it can be taken 
as a definition for the length of T, which is the so-called Favard 
length [Nòbeling (45)]. 

For a convex curve K we have n = 2 for all (? which intersect K, 
except for the positions in which 6 is a supporting line of K, 
which are of zero measure. Consequently we have: The measure 
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of the set of Unes which intersect a convex curve is equal to its 

length. 
1.3. Kinematic density. Let us now consider a set X of oriented 

congruent segments S of length I—for example, the set of those 
which intersect a fixed convex domain. The position of S in Et 
is determined by the coordinates of its origin P(x, y) and the 
angle a f ormed by S and the x-axis. If we want to define a measure 
for X invariant under Sffi, we must take 

m(X) = l^dxdy da. (1.10) 

To see this, we first observe that by a motion (1.2) the variables 
(x, y, a) transform according to (1.2) and a' = a + <p. Conse-
quently the Jacobian of the transformation is 1, and we have 

m(X') = ¡^, dx' dy' da' = j^dxdyda = m(X) 

where X' = wX, which proves the invariance of m(X). The 
uniqueness, up to a constant factor, follows from the transitivity 
of SDÍ with respect to the congruent segments of the plañe by tiie 
same argument previously given for the lines. 

If instead of segmenta we want to measure sets of congruent 
figures K, since the position of such a figure is determined by the 
position of a point P(x, y) rigidly bound to K and the angle a 
between a fixed direction PA in K and the x-axis, we can take 
the same integral (1.10). The differential form 
(1.11) dK'^ dx Ady Ada 
is called the kinematic density for Ei with respect to the group 9)t 
It is always taken in absolute valué. " 

Another form for dK is obtained if instead of the coordinatee 
(x, y, a) for the oriented segment S, we take the coordinates 
(p, 6) of the line G which contains 8 and the distance t =» BP 
from P to the foot H of the perpendicular drawn from the oritpnO 
to G. The transformation formulas are 

(1.12) X = pcosfl + í sine, y = psmO — tcosB, « =• í — J 
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and consequently, up to the sig 
dp A dd A di. We may then write 

(1.13) dK^dG 

where we write G in order to indicat 
oriented (dG = 2 dG). 

From this expression for dK we 
the set of segments of length I w 
domain K of área F and perimeter 
of the chord determined by G on í 

m{S; SnKp^O) = 2 j dpdeá 

= 27rF + 21L 

This formula can be generalized 
catión was given by Green (22). 

If we ask for the measure of th 
contained in K, the result is not si 
For instance, for a circle C oí diam 

{S;SCC)='1(TD^-2D'' 

and for a rectangle R oí sides a, b ( 

m{S; SCR) = 2(irab 

An unsolved problem is that 
domains K with a given perimet 
measure m{S; S CZ K) oí the segr 
are contained in K. For i = O th 
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The preceding very simple exam 
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The same examples show the bas 
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A da = and consequently, up to the sign, we have dx A 
I dp A dd A di. We may then write 

I (1.13) dK = dG Adt 

where we write G in order to indícate that G must be considered as 

oriented (dÒ = 2 dG). 
From this expression for dK we easily deduce the measure of 

the set of segments of length I which intersect a given convex 
domain K of àrea F and perimeter L. In fact, calling X the length 
of the chord determined by G on K, we have 

{S;SnK9^0) = 2J dpdddt='2 f (\ + l)dpdd 

= 2icF + 21L, snxpío 

This formula can be generalized to surfaces [see (55)]; an appli-
cation was given by Green (22). 

If we ask for the measure of the set of segments S which are 
contained in K, the result is not simple; it depends largely on K. 
For instance, for a circle C of diameter D ^ Z, we have 

m{S; S C C) = I (irZ)« - 2Z)̂  arc sin ¿ - 2WW^^ 

and for a rectangle R of sides o, 6 (a è í, 6 è 0» we have 

\ \ m{S; SCR) = 2{icah - 2{a + h)l + P). 

An unsolved problem is that of ñnding among all convex 
domains K with a given perimeter those which maximize the 
measure m{S; S C K) of the segments of a given length which 
are contained in K. For Z = 0 the problem is the classical iso-
perimetric problem and the solution is well-known to be the circle. 

The preceding very simple examples show the three steps which 
constitute the so-called integral geometry in the original sense of 
Blaschke (3): (1) definition of a measure for sets of geomètric 
objects with certain properties of invariance; (2) evaluation of 
this measure for some particular sets; and (3) application of the 
obtained result to get some statements of geometrical interest. 

The same examples show the bàsic elements which are necessary 
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to build the integral geometry from a general point of view: 
(1) a base space E in which the objecta we consider are imbedded 
(in the preceding examples, E was the euclidean plañe í?s); (2) a 
group of transformations ® operating on E (in the preceding 
examples ® was SDl; (3) geomètric objects F contained in E which 
transform transitively by ® (in the preceding examples, the geo­
mètric objects were points, lines or congruent figures). 

Given E, ®, and F, the first problem of the integral geometry 
is to find a measure for sets of F invariant under ®. 

2. GENERAL INTEGRAL GEOMETRY 

2.1. Density and measure jor groups of matrices. Though the 
integral geometry deals with general Lie groups, from the geo-
metrical point of view in which we are principally interested it 
suffices to consider Lie groups which admit a faithful representa-
tion, that is, which are isomorphic to a matrix group. We need 
some facts about groups of matrices, which we shall compile ia 
this section. For a more general treatment, see Chevalley (12). 

Let ® be a group of n X n matrices of dimensión r, that ia, 
each matrix « G ® depende on r independent parameters Oi, 
Os, • • •, o,; more precisely, each matrix u G ® is determined by a ^Mff 
point o = (oi, Os, • • •, o,) of a differentiable manifold of dimensión |M 
r, which we shall denote by the same letter ®; oj, os, • • •, o, are then , w 
the coordinates of a in a suitable local coordinate system. ik-é;* 

Let e G ® be the vmit matrix and u"* the inverse of w G ®- If'i&riífiM 

miM 

'MI 

'f't 
•m 

du denotes the differential of the matrix u, the equation 

(2.1) M-»(w + dw) = e + w 
defines a matrix u = vr^ du of linear (pfaffian) differential fonna'Jj};, 
which is called the matrix of Maurer-Cartan of ®. The element8?|áf •• 
wy of w have the form <oy = «,71 doi + • • • + a,-,-, dur, where tíi^^^p) 
coefficients «<,* are analytic functions of oi, os, • • •, o,. From theeí |JÍÍ|.'Í, :,:J 
n* pfaffian forms toy there are r linearly independent (base of th«íj| |á| 
vector space dual of the tangent space of ®) which we shall do* }!|%i| 

•, ur-, they are called the forms of Maurer-Cartan,¡fe j 
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of ® and are defined up to a lineai 
coefficients. 
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which implies A,- = constant. (Since 
left invariance, we shall hereafter 
understanding that it means left inv 
Notice that by exterior differenti 

into account that du~^ = — u~' du u 

(2.2) du = -«-» du «-* A 

This matric equation includes ti 
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of ® and are defined up to a linear combination with constant 
coefficients. 

The fundamental property of the matrix w is that of being left 
invariant under @. For if u' = SM (» is a fixed element of ®), we 
have du' = a du, and therefore ca' = «'"• du' = u~* s~' adu <= 
M~* d« = w. 

As a consequence, the r forms of Maurer-Cartan are also left 
invariant under ®, and this fact characterizes these forms up to a 
linear combination with constant coefficients. For a proof, we 
observe that since the forms of Maurer-Cartan «1, ••-,&>, are in­
dependent, each pfaffian form Í2 may be written Q(a, da) = 
2í Ai(,a)wi. If 0 is left invariant under ®, we have 

jy = XlAiia'Wt = SÍ4,(a)w.-

and since wí = «,-, we have 

21 (Ai(a') - Aiia))wi = 0. 

Because of the independence of w,-, it follows that Ai(a') = Ai(á), 
which implies Ai = constant. (Since we are interested only in the 
left invariance, we shall hereafter speak simply of invariance, 
understanding that it means left invariance.) 
Notice that by exterior differentiation of u = w~' du, taking 

into account that du~^ = — «~* du w~*, we get 

(2.2) du = —«-* du M~' A du = —u A w. 

This matric equation includes the expression of the exterior 
differentials dwi of the forms of Maurer-Cartan as linear combina-
tions with constant coefficients of the products uj A ui,; these 
expressions are caUed the equations of structure of Maurer-Cartan 
for the group ®. 

2.2. Denaity and measure in homogeneoua spacea. Let $ be a 
Bubgroup of ® of dimensión r — h. Suppose that $ itself is a 
Lie group isomorphic to a matrix group. We want to fínd the 
conditions for the existence of a density (that is, an element of 
volume) in the homogeneous space ®/$ (= set of left cosets s$, 
« G ®) invariant under ®. For this purpose, we notice that the 
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submanifold § of the differentiable manifold ® and its left cosets 
s$ (s G ®) are the integral manifolds of a pfaffian system. 

(2.3) wi = 0, «2 = 0, •••, u» = 0. 

Because $ and its left cosets as a whole are invariant under ®, 
the left side members of (2.3) will be linear combinations with 
constant coeficients of the forms of Maurer-Cartan of ®, and, 
because these forms are defíned up to a linear combination with 
constant coeficients, we may assume that they are the h first 
forms of Maurer-Cartan of ®. 

Because (¡a is invariant under ®, the differential form 

(2.4) £2* = coi A 0)2 A • • • A w» 

will be also invariant under ®. However, fl» is not always a density 
for ®/§ because its valué can change when the points o G @ 
displace on the manifolds s§. We shall now prove the following 
theorem. 

THEOREM: A necessary and sujfficient condition for Qh to be a 
density for ®/§ is that its exterior differential vanish, that is, 

(2.5) dÜH = 0 . 

Proof: To prove this theorem, we observe that the submanifold 
§ and its left cosets fiU up the manifold ® in such a way that for 
each point of ® passes one and only one submanifold. Thus, the 
system (2.3) is completely integrable and it is consequently equiv­
alent to a system of the form 

(2.6) dfi = 0, dfs = O, • • •, dfk = O, 

where {,• = í,(ai, as, • • •, flr) are functions of a, such that the mani­
folds s§ are represented by ¿i = constant (t = 1, 2, • • •, h). We 
can make in @ the change of local coordínales (oi, ai, • • •, a,) 
-* (íii (i, • • • I í», *A+i. • • • I Xr). Since the systems (2.3) and (2.6) are 
equivalent, we have 

(2.7) Q» = 4({ , x) dfi A d{! A • • • A d{*, 

where A({, x) denotes a function of {i, • • •, {», Xk+\, •••,x,. When 
the point a({i, {j, • • •, {», Xh+\, • • •, Xr) varies on 8§, the coordinates 
ii are constant, and, therefore. 
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dA 

f 

I 

Ï 

w 

I 

(2.8) Sfí* = S ^ dxy A dSi A • • • A % . 

On the other side, by exterior differentiation of (2.7), we get 

A d^h dfift = S TF dfy A díi A 

r a á 
+ S ^ d a í í A d f i A A df* = ÍÍ2A, 

because the first sum vanishes. Consequently, so that 50/, = O— 
that is, for fi* to be invariant by displacements on the manifolds 
8§, it is necessary and suflBcient that dfík = 0. This proves the 
theorem. 

If § reduces to the identity, then ® / § = ® and íi, = wi A 
wj A • • • A Wr gives the invariant density (= element of volume) 
of ®, which in integral geometry takes the ñame of kinematic 
density of ®. The integral of fi, gives an invariant measure for ® 
(Haar's measure) which is unique up to a constant factor. 

2.3. The examples of the introduction. To exemplify these gen­
eral results, we shall consider the examples appearing in the 
introduction. 

The group of motions ® = SOï in j&j can be represented by the 
group of 3-dimensional matrices, 

(eos <p — sin Ç) o\ 
sin tp aostp h\ 

O -^-.0_J/_, 
with the parameters ai = o, 02 = 6, Oj = <p- We have 

( eos ip sin ip —b sin <p — a eos ^ \ 
—sin <p eos <p —b eos ^ + o sin ^ j 

O O 

(—sin <p d<p —eos <p dtp dc\ 
eos (p dtp —sin tp dtp db 

O O O ^ 

!a\ 
ib] 
• / 

and, therefore. 
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- & 

—dtp cos ^ do + sin <p db^ 
(0 = w~* du ==\dtp 0 —sin <pda-]r cos i 

0 0 

The fonns of Maurer-Cartan are 

(2.10) 
wi = cos <pda •\- sin <p db, wj = —sin ipda -\- cos <p db, (ot = d<p, 

and the equations of structure 

du = (0 0 - w , A « j \ 
0 0 w> A wi )• 
0 0 0 / 

Thatis , 

(2.11) dwi = —«2 A «»i dui = —(1)8 A <oi, dwj = 0. 

The kinematic density of ID'2 is 

dK = wiAcojAw8 = d a A d & A d<p, 

which, up to the notation, coincides with (1.11). 
Let $1 be the subgroup of ÍD2 consisting of all motions which 

leave the line G(p, 9) invariant (equation oiG'.x cos 0 + j / sin fl — 
p = 0). There is a bijective mapping between the hnes G of Et 
and the points of the space SDí/^i. As density for Unes, we take 
the density of SW/^i. 

By the change of coordinates (a, 6, tp) —»(p, Q, t) in SDl, given by 
the equations, 

a = pcos0 + t Buid, b = psinO — t cosfl, ^ = 0 - 2 

p = o cos fl + 6 sin í, < = o sin fl — 6 cos fl, 6 

the points of ü)ï/§i are p = constant, d = constant. The system 
(2.6) is dp = 0, c» = 0, and the system (2.3) is 

dp = cos fl da + sin fl dò = —sin pda + cos <p db = un = 0, 

dB = dtp = «8 = 0. 

Therefore, the density for lines takes the form 

(2.12) d6 = «í A «j = - s i n tp da A dtp + tos tp db A dtp 
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which is equivalent to 

(2.13) dO = dp Ade, 

as stated in (1.7). 
If §0 is the subgroup of SW consisting of all motions which leave 

the point P{a, b) invariant, there is a bijective mapping between 
the points (o, b) of Et and the points of the homogeneous space 
ün/$o. The system (2.6) is now da = 0, db => 0, and (2.3) gives 
wi = 0, w» = 0. The density (2.4) for points results in 

(2.14) dP = ui A Ui = da A db, 
which coincides with (1.4). In both cases (2.13) and (2.14), the 
condition (2.5) is obviously satisfíed. 

To give an example in which the homogeneous space ®/$ has 
not an invariant density, let us consider the 4-dimensional group 
@ of matrices of the form 

( ai 0 oA 
0 as Oi I, 
0 0 1 / 

aio» 7̂  0, 

and the 2-dimen8Íonal subgroup § of matrices of the form 

üia» j ^ 0 . 
lax 0 0\ 

= (0 a, 0), 
\0 0 1/ 

«1 = 

To obtain the forms of Maurer-Cartan of ®, we have 

. . , , _ 0 
« = «~* du ( aï'^ 0 — a f ' a A /áffli 

0 as"* -O3"*a4)(0 
0 0 1 / \ 0 

(wi 0 WJX 

0 (08 C04 ] , 
0 0 0 / 

das 
0 

dni 
dat 
0 ) 

where 

• dai W4 = as dat. «1 = Oi ' cUií, o)j = af * doi, «8 == as doj, 

The subgroup § is characterized by aj = 0, 04 = 0, and, there-
fore, the system (2.3) is now wj = 0, «4 = 0. The differential form 



314 L. A. Santalo 

Qj = cü: A W4 is not a density, because dSli = 
«3 A Wj A «4 ?í 0. 

-wi A toj A «4 — 

3 . INTEGRAL GEOMETRY IN THE 
THREE-DIMBN8I0NAL EUCL·IDEAN 8PACE 

3.1. TL· group of motiona in Et. We shall consider in detail the 
integral geometry of the 3-dimensionaI euclidean space. The base 
space is Ei and the group & is the group of motions Wl in it. 

Let X represent the one-column matrix formed by the orthogonal 
coordinates xi, xt, xg of a point P. The matrix equation of a mo-
tion X —»x' is 

(3.1) 

where 

(3.2) 

x' = Ax + B, 

A = B = 

and A satisñes the conditions of orthogonality 

(3.3) A* = 4-> (A' = transposed of A). 

The condition (3.3) reduces to 3 the number of independent 
parameters o., which, with 6i, 62, and h, are the 6 parameters on 
which ÍDï depends. 

The group 3DÏ can be representad by the 4 X 4 matrices, 

(3.4) u = 

B> 

with the ordinary rules, 

fAi Al AiBi + BjN fA-^ -4-»B> 

«sWi = U - ' = 
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The matrix of Maurer-Cartan is 

(A-> dA : A-» d5> 

! 

0 i 0 

If we introduce the two matrices 

(3.5) WA = A-> dA, WB = 4 - ' dB 

of order 3 X 3 and 3 X 1 , respectively, the equations of structure 
can be written 

(3.6) do>A = —WJI A UA, duB = —«^ A «s. 

Since üí? is a 6-parameter group, we must have 6 pfaífian forms 
of Maurer-Cartan. Effectively, from (3.3) and (3.5) we deduce 
UA = A'dA = —dA' A = —wU, and the 6 forms are the elements 
of the matrices, 

0 "12 "13 
0 «23 

-"23 0 

which, explicitly, give 

(3.7) «i* = —Uhi = S dji dajh, Ui = S aji ( 

I t is useful to give a more geometrical approach to the pfaffian 
forms Wrt and w<. Let us consider in Ez a fixed frame (Qoi e?, e?, es) 
composed of a point Qo and three orthogonal unit vectors e?, and 
a moving frame (Q; ei, ej, es) which results from the fixed frame 
by the motion u represented by (3.1). If we introduce the matrices 

(3.8) 

we can write 

(3.9) 

and, therefore, 

(3.10) 

e" = (eï, 62, ea),- e = (ei, ej, e») 

Q = e'B, e = e'>A, 

dQ = e^dS = e A-> dB = ews, 

de = e" dA = e A~* dA = ew î. 



316 L. A. Santalo 

which may be written 

(3.11) 
3 3 

¿Q = S «,ey, cfeí = S w„-ey. 
3-1 ; ' " l 

These formulas are useful for the computation of densities, as 
we shall see in the next section. Because of the orthogonality of 
the unit vectors e,-, we have e^e, = fi<i, and from (3.11) we deduce 

(3.12) <a¡ = ejdQ, o)ji = ejdei, 

which are the vectorial form of the equations in (3.7). 

3.2. The àrea element of the unit sphere. We need to remember 
two expressions for the element of àrea of the imit sphere. Let v 
be the unit vector with the components 

(3.13) vi = sinflcos(p, Vi = Bm6sin(p, vs = cos0 

where d, <p are the ordinary spherical coordinates corresponding to 
the endpoint of v. The àrea element at this endpoint is known 
to be 

(3.14) d(t = iy vevr) dd h d<p = únd dfí h d<p 

where {v ve v^) denotes the scalar triple product of the vectors 
V, ve, and v^ (subscripts denote partial derivation). Taking (3.13) 
into account, we have also 

(3.15) d<r = dvt A dvz dvz A dvi dvi A dvi 
Vl Vi Cj 

and since ví + vl + vl = 1, we deduce 

da = Vi dvi A dv» + vt dvt A dvi + v» dvi A dvi. 

On the other hand, if ei, ej, and ej are the 3 orthogonal unit 
vectors of a moving frame, we have 

ei efes A es efes = ei(eM d£ + es* d<p) A e!(e8í dd + e^^ d<p) 
= (eiete-eífiif — eieŝ -esCjí) dB A d<p 

= (ei A Ci) • (en A e» J dd A d<p 

= (ete»eesr) dO A d<p = da 

where da denotes the àrea element of the unit sphere correspond­
ing to the endpoint of es. From (3.12) and (3.16), we get 

(3.16) 
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(3.17) dff = <>)it A «»>. 

We have now at our disposa! all elements necessary to find the 
densities for points, lines and planes of Et invariant under ÍSI. 

3.3. Density for pointa. Let $o be the set of motions which 
leave the point Q({>i, 6i, bz) invariant; clearly it is a subgroup of 
9n. According to (3.11), to keep Q fíxed we must have 

Wi = 0 , «J = 0 , ü>8 = 0 , 

which is the system (2.3), and, according to (2.4), the density 
for points will be wi A w» A w» = d6i A dò» A d6í [applying (3.7) 
and taking into account the determinant |a.-y| = 1, because the 
matrix A = (a<y) is orthogonal]. In general, for the point P{x, y, z), 
we shall have 

(3.18) dP = dx Ady Adz. 

The condition (2.5) is obviously satisfied. 

3.4. Density for planea. Let §» be the set of motions which 
leave the plane E{ei, «2) invariant; clearly it is a subgroup of ÍSSl. 

By the motions of $s the unit vector es remains fíxed and the 
point Q can only move on the plane Ci, e»; therefore, according to 
(3.11), the pfaffian system which characterizes the planes is 

0)8 = 0 , Uli = 0, WSÍ = 0, 

and the density for planes results: 

(3.19) dE = <a» Aun A OH». 

If O, ip are the spherical coordinates of the endpoint of et, (3.14) 
and (3.17) give 

(3.20) wij A W28 = dff = sin 6 dff A d<p. 

If p is the distance from the origin Qo of the fíxed frame to the 
plane E, and au = sin 9 cos tp, 023 = sin 0 sin (p, au = cos d are 
the components of ej (normal to JE), we have p = ouòi + OMÒ» + 
auòs, and, according to (3.7), 

(3.21) «, = X aitdbj = dp + Rdd + 8dip. 
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Here, R, S are functions of 0, <p, b,, the explícit fonn of which has 
no interest for us. From (3.19) and (3.20) we get 

(3.22) dE = BÍnddp A dB A dip = dp A da. 

The condition (2.5) is obviously satisfied, and henee we have: 
If a plañe E is determined by its normal e» and its distance p to a 
fixed origin, the density is given by (3.22), where da denotes the 
área element of the unit sphere corresponding to the endpoint 
of the imit vector e». 

As an exercise, prove that if the plañe is given by the equation 
nx + vy + wz + I = O, its density takes the form 

dE = 
du A dv A dw 
(M« + f' + «;«)'• 

Example 

Let <S be a fixed segment of length 1. To compute the measure 
of the set of planes E which intersect S, we take S on the es-axis and 
the middle point of S as the origin of coordinates. Then we have 

(3.23) m(E; £ n -S ?í 0) = / dE 

I 
= 2h ^ J 1*̂°̂  6\sined0 = vi. 

If r is a polygonal line of length L, writing (3.23) for all sides 
of r and adding, we obtain 

(3.24) í ndE = irL, 

where n denotes the number of intersection points of E with F. 
By a limit process it is not diíEcult to prove that (3.24) holds for 
any rectifiable curve. The integral in (3.24) is extended over all 
planes of E3, n being O for the planes which do not intersect T. 

3.5. Density for straight Unes. Let $1 be the set of motions 
leaving the line G which contains the unit vector es invariant; 
clearly §1 is a subgroup of SDÏ. 

By a motion of §1, the point Q can only move in the direction 
of es, and, therefore, (3.11) gives wi = O, wj = 0. Moreover, be-
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cause Cj is fixed, from (3.11) we deduce «w = 0, WÍJ =: 0. The 
pfaffian system (2.3) for the Unes of Et becomes 

(3.25) wi = 0, «t = 0, wij = 0, ÍCJ8 = 0, 

and the density for lines is 

(3.26) dG = wi A wj A «u A W2!. 

Áccording to (3.12), wi A ws equals the àrea element of the 
plane (ei, et) at the point Q, and we have seen that uu A (oss is 
the àrea element of the unit sphere corresponding to the endpoint 
of cj, that is, to the direction of G. If G is determined by its direc-
tion Ca and its intersection point (x, y) with a fixed plane, denoting 
by yf/ the angle between e» and the normal to the fixed plane, we 
have wi A wj = |cos 4'\dx t\ dy, and we can write (3.26) in the 
form 

(3.27) dG = |cos ípldx A dy A da. 

From (3.26) and (3.6) it is easy to show that the condition (2.5) 
is satisfied. 

As an exercise, prové that if G is given by the equations i = 
02 + p, y = 6z + g, then its density is 

Example 

,„ _ da A db A dp A dq 
(l + o» + 6»)» 

Let 2 be a fixed surface of class C (= with a continuous tangent 
plane). If P denotes a point of the intersection G O S and df 
denotes the àrea element of 2 at P, the density for lines can be 
written dG = |cos ^ | d/ A d<s, where i> denotes the angle between 
G and the normal to 2 at P. Fixed P, the integral of |cos ^| da 
extended over all the lines which pass through P, gives the projec-
tion of one-half the unit sphere upon a diametral plane—that is, T. 
The integration of dj over the whole 2 gives the àrea F of 2. There-
fore, taking into account that each line has been counted as many 
times n as it has intersection points with 2, we get 

(3.28) fndG'=rF, 
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where the integral is extended over all linea of Et, n being O for 
the Unes which do not ¡ntersect S. 

3.6. Kinematic density. The kinematic density is 

(3.29) dK = wi A w» A wa A wis A wi8 A w». 

To give a geometrical interpretation to cou = ei de», we observe 
that if we take on the plañe ei, Cj two fixed orthogonal unit vectors 
él, et and call a the angle between ei and éi, we can wríte «i « 
eos ae* + sin a ej, e» = —sin a e* + eos a ^ ; therefore, ei det " 
—da. That is, ui» means an elementary rotation about the eraxis. 
Consequently, according to (3.17) and (3.29), if a motion is deter-
mined by the position of the moving frame (Q; ei, 6%, es), the kine­
matic density has the form 

(3.30) dK = dP A d<r A da, 

where dP is the volume element of Et at the origin Q of the moving 
frame, da is the área element of the unit sphere corresponding to 
the endpoint of e», and da is the element of rotation about es. 
We remember that we always consider the densities in absolute 
valué; thus, there is no question of sign. 

Let US do an application of (3.30). Let r be a fixed curve with 
continuous tangent at every point and finite length L and let S 
be a moving surface of class C and finite área F. Let Q be a point 
of r n 2 and let es be the normal to 2 at Q. If fl denotes the angle 
between es and the tangent to r at Q (which we may take as the 
es-axis of the fixed frame) and df denotes the área element of 2 
at Q, we have dP = |cos 6\ df A da (s = are length of F). Putting 
this valué in (3.30) and integrating over all the positions of 2 in 
which it has common point with T, because each position of 2 
will be counted as many times n as intersection points have 2 
and r, we get 

(3.31) f ndK = á^^FL. 

Notice that the same formula holds if we suppose 2 fixed and T 
moving with density dK. 

If 2 is the unit sphere, we can take the origin of the moving 
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I 
r 

frame at the center of 2; then we have J n dK = Sir^ j n dP, and 

(3.31) gives 

(3.32) f ndP = 2irL, 

which is vàlid for any rectifiable curve (51). 

3.7. A differeniial formula. In Section 5 we will need an im­
portant avixiliary formula which derives from (3.30). Let So be a 
fíxed surface of class C^. At each point Q of Zo we consider an 
orthogonal frame (Q; e?, eS, eS) with orígin at Q and with et normal 
to So. If the displacement vector on So at Q is wie? + on^, the àrea 
element ia df = ui A <>>*. To the unit vector e" tangent to So at Q 
which forms with e? the angle TO, is attached the differential form 
dLo = wi A wj A dro called the density for line elements (Q; e") on 
So, and the pfaffian form da = cos TO wi + sin TO uj called the ele­
ment of length corresponding to the direction e". 

Now let Si be a moving surface of class CS and assume that 
the intersection So H Si is a rectifiable curve F. Let Q be a point 
of r and ÍQ; ei, es, es) be an orthogonal frame with cs perpendicular 
to Si. Let ds be the length element of F at Q and dso, dsi those 
normal to F on So and Si, respectively. Let 0 be the angle between 
the normals eS, e». If dfo, dfi are the elements of àrea of So, Si at Q 
and dP denotes the element of volume of E% at Q, we have dP = 
sin e d/o A dsi and d/i = ds A dai. The element of àrea of the 
unit sphere at the endpoint of ej may be written da — smOdB A dn. 
Putting now dTi = da to imify the notation of (3.30), from this 
equation and the preceding relation, we deduce inunediately (up 
to the sign) 

(3.33) da AdK = am^edfa A dn A dfi A dn A dd 

= sin* d dLo A dLi A dB, 

which is the differential formula we want. 
An immediate consequence is obtained by integrating both 

sides over all positions of the moving surface Si. We get 

(3.34) [ LdK=' 2ir''FoFi, 
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where L denotes the length of the curve So D Si, and Fo, í'l are 
the areas of So, Si, respectively. 

If Si is the unit sphere and we take the origin of the moving 
frame at the center of Si, we have 

and (3.34) gives 

(3.35) ¡ LdP = ir^Fo. 

3.8. A definition of àrea. Let now Si, S2 be two moving unit 
spheres and So a ñxed surface. Let N be the number of points 
of the intersection So O Si O Sj. If dPi denotes the volume ele­
ment at the center of S,- (i = 1, 2), we get from (3.32) and (3.35) 

f N dPi dPi = 2T f LdPi = 2ir·í'o. 

Conversely, this result conduces to define the àrea of a con-
tinuum of points by the formula 

^ ^ ¿ / A r d P i d P , , 

provided the integral of the right-hand side exists [see (52)]. 
Applications of the integral geometry to the definition of àrea 
for Al·llimensional surfaces have been made by Federer (17-19) 
and Hadwiger (23) and (25). See also Nòbeling (45) and (46). 

3.9. Planes through a fixed poirU. Let us now consider the set 
of planes Eo which pass through a fixed point 0. The density for 
sets of Eo invariant under the group 9>ío of the rotations about 0, 
is clearly dEo = dtr, where da denotes the àrea element of the unit 
sphere corresponding to the direction perpendicular to Eo. In fact, 
this differential form is invariant imder SDÏo, and, because of the 
transitivity of the planes Eo with respect to SDïo, it is unique up 
to a constant factor. The planes Eo are considered non-oriented; 
therefore, the measure of all the planes through 0 will be 

(3.36) j dEo = j de = 2v, 

where \Z denotes the half of the unit sphere. 
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Let <S be a fixed are of great circle on the unit sphere of center O 
of length a. The measure of the set of planes EQ which intersect 
S {= measure of the set of great circles which intersect S) will be 
the área of the lune bounded by the great circles the poles of 
which are the endpoints of S—that is, m(J5o; S C\ EIÍ 9^ Q) = 2a. 
If instead of S we have a spherical polygonal Une r the sides of 
which have the lengths a<, we have, writing the last formula for 
each side and adding, 

(3.37) j ndEt = 2L, 

where L denotes the total length of r . The integration is extended 
over all (non-oriented) planes through O—that is, according to 
dEd = da, over half the unit sphere. By a limit process we can 
prove that (3.37) holds for any rectifiable spherical curve of the 
unit sphere. 

Following Fenchel (20), we want to apply (3.37). Let K he & 
closed space curve of class C without múltiple points and let T 
be the spherical indicatrix of it (= the curve T = T{s), where T 
is the tangent unit vector to K). The are length element of T is 
dsi = \x\ ds, where x denotes the curvature and s the length ofíT. 
Consequently, (3.37) yields 

(3.38) j ndEo = 2 j ^ \x\ ds. 

Every closed space curve K has at least 2 tangents which are 
parallel to an arbitrary plañe. This means that every plañe Eo 
interseets r in at least 2 points. Henee, n è 2, and (3.36) and 
(3.38) give 

(3.39) J^ \x\ ds è 2ir, 

a classical inequality of Fenchel. 
If K is knotted, it is easy to see that it has at least 4 tangents 

parallel to an arbitrary plañe. Henee, n è 4, and (3.36) and (3.38) 
give the following inequality of Fáry (for knotted curves) (16), 

(3.40) ¿ IH ds è 4ir. 
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These results have been generalized to closed varieties in í?, by 
Chem and Lashof (11). 

4. APPLICATIONS TO CONVBX B0DIE8 

The integral geometry is closely related to the theory of convex 
bodies. We compile in this section some simple facts on this theory 
from many sources—for example, Bonnesen and Fenchel (4), 
Busemann (5), Hadwiger (24), and Vincensini (72). 

Let fc be a plañe convex set of àrea / placed in Et. Let / , be 
the àrea of the orthogonal projection oi k on 6, plane perpendicular 
to the direction <r, and let 0 be the angle between <r and the normal 
to the plane which contains k; we have / , = |cos 6\ f. If da denotes 
the àrea element of the imit sphere Z corresponding to the direc­
tion a, we have 

(4.1) ¿ f.d<r = f p dv ¡J Icos fl| sin e de = 2^/, 

and, therefore, 

(4.2) í=hízí'^-
Now let i^ be a convex body of Et; we shall denote by dK the 

convex surface bounding K. Let F be the àrea of dK and F, the 
àrea of the orthogonal projection of i^ on a plane perpendicular 
to the direction <r. Applying (4.2) to each element of àrea of dK 
and integrating over all dK, we get 

(4.3) F = i/^F,d.. 

known as Cauchy's formula for the àrea of a convex body. 
Let 0 be an interior point of K and p = p(<r) = p(0, <p) be the 

supporting function of K with respect to 0 (= distance from 0 to 
the supporting plane perpendicular to the direction a of spherical 
coordinates B, <p). The convex body KK parallel to ÜC at distance h 
has the supporting function p» = -pia) + h, and if R\, Rt are the 
principal radii of curvature of dK, those of dKh at corresponding 
points are fíi + A and R%-\-h. Between the àrea element d/ of 
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òK and the àrea element da of its spherical image, there is the 
relatioü df/d<r = fíifij, and consequently, we have 

(4.4) ^ = /z ^1^» ^· 

Àpplying this formula to dKk, we get 

(4.5) F» = J^ (fíi + h)iBt + h)d<r = F + 2Mh + ^h\ 

where 

(4.6) M = i/^(«. + ñ,)d. = l/^^(¿ + ¿)d/ 

is the integral of mean curvature of dK. If V denotes the volume 
of K and Vk that of KH, from (4.5) we deduce 

(4.7) Vk = V + ¡^ Fkdh = V + Fh + Mh* + |irA«, 

which is the so-called Steiner's formula for parallel convex bodies 
in£s-

For plane convex sets, the formula analogous to (4.7) is 

(4.8) fk = f + uh + irh\ 

where u = length of dk. Àpplying (4.8) to the orthogonal projec-
tion of £ on a plane perpendicular to the direction c, we have 

FcA = F, + u^h + vh\ 

and by Cauchy's formula, 

Comparing (4.9) with (4.5), we get (since both formulas hold 
for any h) 

(4.10) ^-híz'''^' 
which is a very useful expression for the integral of mean curvature 
of the boimdary of a convex body. 

On the other side, considering the volume y of £ as a sum of 
pyramids with the common vèrtex 0, we have 
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(4.11) ^ = i Xx P '̂ •̂  == ̂  /z P^»^* ^ · 

Applying this formula to Ki,, we get 

7» = i /^ (p + h){R, + h){R, + h) d<T 

= 7 + I /^ (fíift + p(Ri + R,)) d<, 

+ jf^(.p + Ri + Ri)da + ^nh*. 

Comparison with (4.7) yields 

(4.12) F= ^ f^piRi + Rt)d<r, M = f^pd<r. 

The last formula allows definition of M for any convex body 
without the conditions of regularity necessary to define the prin­
cipal radii of curvature of dK. A practical way to compute M 
for convex surfaces dK not sufficiently smooth is to compute the 
integral of mean curvature Af» of the parallel surface dK^ (which 
is smooth) and then to pass to the limit for h —*0. This method 
yields the foUowing resulta easily. (1) For a convex polyhedron 
the edges of which have lengths Ui and the corresponding dihedral 
angles of which are «<, we have 

M = ^ S (ir - ai)ai. 

(2) For a right cylinder of height h and radius r, 

M = Trh + irV. 

(3) For a plañe convex domain, considered as a flattened convex 
body of Ei, we have 

M = | « , 

wherc u is the length of the boundary of the domain. 
Notice that, according to (3.22), the second formula (4.12) 

gives the measure of the set of planes E which cut K—that is, 
we have the formula 



INTEOBAL GEOMETRT 327 

àï 

(4.13) / dE = M. 

On the other side, applying (3.28) to convex surfaces (n = 2), 
we get 

inKí" 
dG = -^F. (4.14) 

onJcTío 

We may therefore state: 

The volume V of a convex body K is the tneasure of the points 
contained in it; the àrea F of dK is {up to the constant factor ir/2) 
the measure of the Unes which intersect K; the integral of mean 
curvature M is the measure of the planes which intersect K. 

These integral geomètric interpretations of V, F, and M have 
been generalized to convex bodies of the n-dimensional euclidean 
space [(60) and Hadwiger (23) and (25)]. 

5. THE KINEMATIC FUNDAMENTAL 
FORMULA IN E3 

5.1. The Evler characteristic of a domain. Let S be a closed 
surface in ^a which is of class C and bounds a domain D of vol­
ume V. If df is the àrea element of Z and d<r the àrea element of 
the corresponding spherical image, we know the formulas 

where fií, fij are the principal radii of curvature, 7(2) denotes 
the àrea of the spherical image of 2, and x = x(7)) is the Euler 
characteristic of D. Because 2 is closed, its spherical image covers 
the unit sphere an integer number of times, and therefore x = 
/(S)/4jr is an integer. For example, for domains topologically 
equivalent to the sòlid sphere, x = li aid íor domains which are 
topologically equivalent to a torus, x = 0 [see, for example, 
Struik (69, p. 159)]. 

If 2 is not of class C but consists of a finite number of faces 
(= pieces of class C) which intersect along edges (= closed 
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curves of class C ) , the Euler characteristic is obtained adding 
to the àrea of the spherical image of the faces (5.1) the àrea of the 
spherical image corresponding to the edges, which we shall now 
compute. Let r be an edge of S and let T, N, B, denote its unit 
vectors tangent, principal nonnal, and binonnal; let s be the arc 
length of r . If es, es are the outward normal unit vectors to the 
faces of Z at the points of F and we call di, d'i the angles which 
they form with — A'̂ , the spherical image corresponding to F is 
the portion of unit sphere defíned by the equation, 

Y{s, e) = - c o s ON + sine B (Oi ^ d ^ e[,0 ^ a ^ L), 

where L is the length of F. 
Using Frenet's formulas, we have F« = 1, Y,Ye = — T, F ? = 

«''cos^O + T*, ( I W - {Y.YeW^ = xcosfl, where x and T are 
the curvature and the torsión of F. The àrea /(F) of the spherical 
image corresponding to F will be 

(5.2) /(F) = íxcosOddds = [(smdí — sindi) xds. 

Under the assumption that S has no vértices ( = points in 
which more than two different faces intersect), the Euler char­
acteristic of S is given by the second formula (5.1); we take into 
account that at the left side, the integral analogous to (5.2) for 
all the edges of 2 should be added. 

5.2. The kinematic formvla. Let Do, D\ be two domains of Et 
boimded respectively by the surfaces 2o, Si, which we assume to 
be of class C*. Let F<, x* be the volume and the Euler character­
istic of Di and let F„ Mi be the àrea and the integral of mean 
curvature of 2 , (i = 0,1). Suppose Z)o is fixed and Di is moving, 
and let dK be the kinematic density for D\. If f'(í)o D Di) denotes 
a function of the intersection Z)o C\ Di, one of the main purposes 
of the integral geometry is the evaluation of integrals of the tjrpe 

(5.3) J = f #(Do n Dl) dK 

over all positions of Di. For example, if $ = Foi = volume of 

•Do n Dl, we can easily prové that j Vm dK = SirWoVi, and if 
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* = Fol is the área of the boundary of Do O Di, the formula 

[ Foi dk = STTHFOÍ'I + V1F9) holds (50). The most important case 

corresponda to * = x(-Do O Di) is the Euler characteristic of 

Do n Di. Surprisingly enough, the integral J x(Do O -Di) dK over 

all positions of Di can be expressed by only Vi, xi, Pi, Mi (i = 0,1). 
The result is the foUowing: 

(5.4) ¡ x(Do nDi)dK = 8«-'(7«xi + T̂ ixo) + 2T{F<MI + FiMo). 

This result is the so-called kinematic fundamental formula, which 
we shall now prove. 

We need to compute x(Do O Di). The boundary of Do O Di 
consista in a part Zoi of Zo which is interior to Di and a part Zio 
of Si which is interior to Do. Both Soi and Sw are of class C and 
are joined by an edge r = So O Si, composed of one or more 
closed cvirves, of the boundary of Do O Di. According to (5.1) 
we will have 

(5.5) 4irx(Do fl Di) = 7(Soi) + J(Sio) + I(r), 

and we can write 

(5.6) 4ir ¡ x(Do nDi)dK = f /(Soi) dK 

+ ¡ J(Sio) dK + ¡ I{T) dK, 

where the integrals are extended over all positions of Di. 
The first two integrals on the right-hand side of (5.6) are easily 

evaluated. Taking the first integral, let P be a point of So O Di 
and let dcp denote the área element of the unit sphere at the 
spherical image of P. By first fixing Di and then letting P vary 
over So O Di, we get 

¡ dcpdK = ¡ I{^<¡i)dK, 
pesonoi 

and by first fixing P and then rotating Di about this point and 
letting it vary over Di and So, 
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f dapdK= f dcp f dK = Sir'Vi f dcp 
pezoOBi pea P€Z)i p&a 

= 8T*FI/(ZO) = 32ir'Fixo. 
Thus, we have 

(5.7) ¡ /(2oi) dK = 32^«r,xo. 

Similarly, by the evident invariance of the kinematic density 
under the inversión of the motion, we have 

(5.8) f /(Sio) dK = 327r«7oXi. 

It remains to evalúate the third integral in (5.6). Let Q be a 
point of r. By Meusnier's theorem, if p is the radius of curvature 
of r and R, r are the radii of normal curvature of 2o and Zi in the 
direction of the tangent to F at Q, we have 

(5.9) p = RcosBi = r cos Oi 

where Oi, 6'i are the angles between the outward normals e», ej to 
So, 2i at Q and the vector —N opposite to the principal normal N 
of r at Q. Taking into account the identity 

(5.10) sin ei - sin Oi _ l(o' _g) 

and putting Oi — 6i = 6, we deduce from (5.9) and (5.10) 

(5.11) sin íl — sin Oi = p í 3 + - j tan 2 0. 

If To, Ti denote the angles between the tangent to F at Q and 
the fírst principal direction of Xo, Zi at Q, by Euler's theorem 
we have 

._ ,„, 1 cos* TQ sin*To 1 cos' n , sin* n 

where Ri, Rt are the principal radii of curvature of 2o, and n, rt 
are those of Si at Q. By (5.2), (5.11), and (3.33) we have 

(5.13) fl(T)dK^f(^ cos* To , sin' To , cos* n , sm 
% I R% Tx T% 

tan ie sin* 9 d/o dro d/i dn dB, 
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*Ü 

!1' 

where the limita of integration for the angles are 

O g To á 2ir, O g Tj g 2ir, O g tf g ir. 

Computing the integral in (5.13), we get 

(5.14) j I{T) dK = STr'ífoMi + FrMo). 

Adding (5.7), (5.8), and (5.14), and considering (5.6), we get the 
desired result (5.4). 

The formula (5.4) is the work of Blaschke (3). I t has been gen-
eralized tó En by Chern (8). For the generalizaron to spaces of 
constant curvature (noneuclidean geometry) see Wu (76) and 
(54), (57), and (58). For another kind of proof valid for more 
general domains than those considered here, see Hadwiger (23). 

Notice that if Do, Di are convex jodies, we have x{Do) = 
x{Di) = x(Do n Di) = 1 if Do n Di ?í O, and x(Do O Di) = O, 
if Do n Di = 0. The formula (5.4) yields 

(5.15) / dK = 87r»(Fo + 7i) + 2ir(FoMi + FiMo), 

which gives the measure of the set of congruent convex bodies Di 
having a common point with a fixed convex body Do. 

If Di is a sphere of radius r, we can take the origin of the moving 

frame.at the center of Di; then we have j dK = 8ir̂  j dP, and 

(5.15) gives 

/ dP = Vo+ Ftír + Mtír^ + ^irr», 

the Steiner's formula (4.7). 

•A 

6. INTEGRAL GEOMETRY IN COMPLEX SPACES 

6.1. The unitary group. The integral geometry of complex spaces 
has not been developed very much, and it deserves further study. 
We shall give a simple typical example. 

Let P„ be the n-dimensional complex projective space with 
the homogeneous coordinates Zi{i = O, 1, • • •, n), so that z = 
(«o, zi, Zí, • • •, Zn) and Xz = (Xzo, \zi, • • •, Xz„), where X is a nonzero 
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complex number; defíne the same point. Let 3.- denote the complex 
conjúgate of z,-. We assume the homogeneous coordinates Zi are 
normalized so that 

(6.1) (zZ) = 2 z<2< = 1, 
0 

which detennine z,- up to a factor of the form exp (ía). 
We consider the group U (unitary group) of linear transforma-

tions 

(6.2) ü' = Az 

which leaves the form (6.1) invariant. The matrices A satisfy 

(6.3) A2' = E, A^i = J', l'A = E, 

where E is the imit matrix. These relations show that U depends 
upon (n + 1)' real parameters. If we intèrpret the elements 
au (̂  = 0,1, • • •, n) of the matrix A as the homogeneous co­
ordinates of a point a¡, G Pn, the conditions (6.3) give 

(6.4) (OySt) = íyt, 

which show that the points a* are normalized; they form the 
vértices of an autoconjugate 7t-simplex with respect to the quadric 
(zS) = 0. Because at and a* exp (iat) are the same geomètric 
point, to determine an element M G U we must give the n + 1 
geomètric points a» [with the conditions of (6.4)], as well as the 
n + 1 real parameters a*. 

The invariant matrix of Maurer-Cartan is 

(6.5) w = 4-1 dA = 3 ' dA, 

which satisfies, in consequence of (6.3), 

(6.6) « + ¿ ' = 0. 

The invariant pfaffian forms are 

(6.7) wyt = S SM da» = (Sí dai), 
A-O 

and (6.6) gives 

(6.8) wyt + üki = 0. 

The kinematic density of U, up to a constant factor, is 
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(6.9) du= ¡U UjtfL·ik n W»A], j <k, o s h h,h^n, 
where the product is exterior. 

We have all necessary elementa for fehe study of the integral 
geometry of the unitary group. We shftll reatrict ouraehres to the 
case n = 2 (complex projective plañe), 

6.2. Merorrwrvhic curves. A complex ftnalytic mappmg Ex -^ Pj 
of the complex euclidean line Ei into th« complex proieetive plañe 
Pi defines a meromorphic curve in the mnae of J Weji, H Weyl 
(76), and L. Ahlfors (1); it is defined by three analytk functions 
2< = z<(<), (i = 0,1, 2). Every such curve r has aa invariant 
integral with respect to U, which we lOiaU cali the order of r. 
When the homogeneous coordinates ti tkta normalimi such that 
the condition (6.1) is satisfied, the or(J«r of r is de&ned by the 
followmg integral (up to the sign which depends upon the orienta-
tion assumed for r ) , 

(6.10) '̂  = à/r" 
where i = V—1 and 

(6.11) Ü= [dz di] = (feo A d2o + dz, A rfi, + «fe, A ¡Èj. 

If r is an algébrale curve, we shall m, that J coinñdes with its 
ordinary order or grad. 

If the coordinates z,- are not normaliznd, we set Z. = Zi/ízZV'^ 
and an easy calculation gives 

(6.12) 0= [dZd2] = l lMJ' dt A di, 

where z A z' denotes the vector with tho componaie z^í - z^í, 
Z2Z0 — Z0Z2, and ZQZI — zizo. 

For some purposes, it is convenient U, write O in another form 
Let c be a pomt on the tangent to r at Iho point z sudí that 

(6.13) {a) = 1, (íte) , 0. 

We will have (since c is on the tangent u¡ r at z) 

(6.14) dz = az + fic, <Í2"ai + ^ 
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where a, /3 are the pfaffian forms 

(6.15) a = (2 dz), /3 = (2 dz). 

From (6.13) and (6.14), we deduce 

(6.16) Q=[(fed2] = a A a + / 3 A Í , 

and because a = — a, we have a A 5 = 0. Therefore, 

(6.17) a = fi A0= i^dz) A (cdS), 

a formula which will be useful in the foUowing discussion. 
As an application, we shall use (6.17) to obtain the order of a 

complex straight line. Since J is invariant by unitary transforma-
tions and any line can be transformed into the axis si = 0, it 
suffices to compute the order in this case. We take, in order to 
satisfy (6.1) and (6.13), 

s= ( P € * » ( 1 + P V ' S 0 , ( 1 + P ' ) - " ' ) , 

C = (-6*^(1 + p')-"\ 0, p(l + P V " ) , 

and we get 

(c dz) = -
dp + ip d<p (c dl) = -

dp — ip d(p 
1 + p ' 

and 

(6.18) íi = (c dz) A (c di) = 
2ip 

; d<p A dp. 
(1 + P')' 

The order of the segment a^p^b, 0^<p¿2ir will be 

1 /•'' / 2 ' 2zp , , b^ - a^ 
'^ = 2;dla P(rÍh)^^'P'^'' = ( 1 + P T "̂  '̂  (l+a»)(l + 6') 

For a = 0, 6 = =0, we obtain 7 = 1 , which is the order of a hne. 

6.3. A generalization of the theorem o/ Bezout. Let Fi, Tj be two 
meromorphic curves of Pj of orders Ji, Ji, respectively. Leturjbe 
the transform of Tj by w G U. In the theory of meromorphic 
curves it is important to determine the dift'erence bstween the 
product JiJi and the number A^(ri H uFt) of points of intersection 
of Ti and uTi, each counted with its proper multiplicity [Ahlfors 
(1), Chern (9) and (10), and H. Weyl (75)]. 
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Our goal is more simple. We wish to obtain the mean valué of 
Ar(ri n «FJ) for all w Ç U. First, we will compute the integral 

(6.19) / = I^NiTinuTi) du 

where the element of volume du m given by (6.9). In our case, 
» = 2, making use of (6.8), and considering only the absolute 
valué, we have 

(6.20) du = {So dai) A (Hi doo) A (So doi) A (jOi doo) A (5i dot) 

A {Qi düi) A (So daò) A (Si dai) A (02 das). 

Inasmuch as we are only interested in the transformations u 
such that Ti O tiTt -^ O, we may choose the points oo, «i, and «Xj, 
which determine M, so that: oo = point of Fi H MF2; aj = point on 
the tangent to «Fj at oo; 02 is then determined by the relations 
(6.4), which we now write 

(6.21) (aoHo) = (oi3i) = (OÜS,) = 1, (ooSi) = (ooS,) = {a^ = 0. 

Let s be the point in which the line determined by oi, Oj intersects 
the tangent to Fi at oo. We shall have 

(6.22) (s5) = 1, (sUo) = O, (Sao) = 0. 

Acitording to (6.17), the differential form which gives the order of 
WF2 is 

(6.23) fis = (Si dao) A (oi dSo) = (So doi) A (Si doo). 

Since we álways take oo on Fi, we have doo = aoo + jSs, where 
a = (So doo), /3 = (S dco). Consequently, we have 

(S, doo) = /3(3s«), (Oí dSo) = ^(osS), 

and, by exterior multiplication, 

(6.24) (Sí doo) A (oj dSo) = (So d(h) A (Sj doo) 

= 03 A íO(S!s)(a2s) = (S2s)(a2S)í2i, 

where Qi is the differential form which gives the order of Fi. 
From (6.20), (6.23), and (6.24), we have 

(6.25) d« = n, A í2i(S28)(as8) A (Sido») A (Sjdoi) A (Sodoo) 

A (Sidoi) A (Bjdos). 
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We first keep fixed the geomètric points oo, cj, and Oj. With the nor-
malization (6.21), their homogeneous coordinates ow (A = 0 , 1 , 2) 
are determined up to an exponential factor exp (lay); the param-
eters ay(j = O, 1, 2) are variables in (6.25). Putting oy = o* 
exp (¿a,), we have daj = agi daj, (5y doy) = i dctj, and, conse-

quently, j ijljda,) = 2TÍ {j = 0 , 1 , 2). 

From the right side of (6.25) it remains to evalúate (oo being 

fixed) f (52s)(a2S)(Si doj) A (Bj doi), where Oi, Oj describe the line 

{ooz) = O which contains the point s. We can assume, because of 
the invariance of the integrand by unitary transformations, that 
this line is the axis zi = 0. According to (6.18), we then have 

(6.26) f (Si da») A (S^ da,) = f JT^^, ¿p d^, 

where we have put Oj = (pe<«'(l + p")"»", O, (1 + p ' ) -" ' ) , Oi = 
(-6*^(1 + p«)->'*. O, p(l + p*)-""). Taking s = (0,0,1), we obtain 

1 + P* 
(6.27) (S28)(ffl2S) = 

and, therefore, 

(6.28) j (a2s)(a2s)(aidaí) A (ojdaí) 

=/o"/o" (nvp"^"''*' = '""• 
From (6.25) and (6.28), we obtain the integral of du extended 

over all u such that Ti O uTi j ^ O, each u coimted N{^\ C\ uTi) 
times. We get (up to the sign which is unessential). 

(6.29) j[j A^(ri n wr,) du = 32,rVi7s, 

where Jx and Ji are the orders of Ti and Fj, respectively. 
To obtain the mean valué of NiJ!\ C\ v^i)t we need the total 

measure of U. Taking for Ti and Tj two straight lines, we know 

that 7i = ^2 = 1 and AT = 1; therefore (6.29) gives Ldu = 32ir«. 

Consequently, the mean valué of N is 
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(6.30) N = JiJt. 

For algébrale curves, iV is constant and (6.30) gives the classical 
theorem of Bezout; therefore our result may be considered a 
generalizatlon of this theorem to meromorphlc curves. For the 
extensión to analytic manifolds of P» see (56). 

7. INTEGRAL GEOMETRT IN 
RIEMANNIAN SPACE8 

7.1. Geodèsics which intersed afixed swrface. The methods of the 
integral geometry can be also applied to Riemannian spaces, 
mainly to spaces of constant curvature or other spaces which admit 
a group of transformations into themselves. The case of surfaces 
is simple and well known (55). Here, we want to consider the case 
of 3-dimensional spaces. 

Let ^3 be a 3-dimensional Riemannian space deñned hy d^ = 
Qijdxidxj, where the summation convention is adopted; i, j are 
summed from 1 to 3. Let us introduce the notations, 

(7.1) F = (síox5ïí)'«, 
dF 

where x'i = dxi/dt. As we know, a geodèsic of Rz is determined by 
a point Xi and a direction x{, which is equivalent to give x,-, p,-
(i = 1, 2, 3). The density for sets of geodèsics is defined by the 
foUowing exterior differential form, taken always in absolute valué: 

(7.2) dG = dp2 A dxi A dpz A dxt + dp^ A dx^ A dpi A dxi 

+ dpi A dxi A dpt A dxi. 

The measure of a set of geodèsics is the integral of dG extended 
over the set. The density (7.2) is the second power of the differ-

3 
ential invariant S dp< A dxi, which constitutes the invariant in-

1 

tegral of Poincaré of the dynamics (6, pp. 19 and 78), and it therefore 
possesses the foUowing two properties of invariance: (1) it is in­
variant with respect to a change of coordinates in the space; 
(2) it is invariant under displacements of the elements (x„ p.) on 
the respective geodèsic. 
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To give a geometrical interpretation of dG, let us consider a fixed 
Burface 2 and a set of geodèsics which intersect Z. Let G be such 
a geodèsic and P its intersection point with 2. In a neighborhood 
of P we may assume that the equation of 2 is ÏS = 0 and that the 
coordinate system is orthogonal, that is, d^ = gu dx} + gu dxl + 
gt» dzi, and thus p,- = gaidxi/ds). If »,• represents the cosine of the 
angle between G and the i,-coordinate curve at P, we have 

(7.3) Vi = v ^ ; j ^ ' , Pi = Vg^vi, dpi = V^idv¡ + 
'da dXk 

' Vi dxl·l 

To determine G according to the second property of invariance 
of dG, we may choose its intersection point P with 2. At this 
point we have x» = 0, dx» = 0, and, consequently, (7.2) takes the 
form 

(7.4) dG = dpi A dxi A dpt A dxt, 

or, according to (7.3), 

(7.5) dG = vgiigndvi A dxi A dv^ A dxi 

On the other hand, to each set of direction cosines n, Vi, and v, cor-
responds a point of the unit eucHdean sphere and the àrea element 
in it has the value (3.15) 

(7.6) da = 
dl'l A dv2 

vt 

Henee, we have, in absolute value, 

(7.7) dG = |cos <p\ d<T A df, 

where <p is the angle between the tangent to G and the normal to 2 
at P, and df = "^giign dxi A dx% is the element of àrea 2 at P. 

Integrating over all geodèsics which intersect 2, on the left side 
each geodèsic is counted a number of times equal to the number n 
of intersection points of & and 2 ; on the right, the integral of 
|cos ^1 da gives one-half the projection of the unit sphere upon a 
diametral plañe ( = ir). Consequently, we get the integral formula 

(7.8) j ndG = TF, 
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where F is the área of S. This formula generalizes (3.28) to Rie-
mannian spaces. 

7.2. Seta o/ geodèsic segments. Let í be the are length on the 
geodèsic G. From (7.7) we deduce 

(7.9) dG Adt^ Icos <p\ dv A df A di. 

The product |cos <p\ di equals the projection of the are element dt 
upon the normal to 2 at P ; consequently, |cos <p| df A dt equals 
the element of volume dP of the space at P, and (7.9) can be 
written in the form, 

(7.10) dG Adt = dP A da. 

An oriented segment S of geodèsic is determined either by G, 
t (G = geodèsic which contains S; t = abscissa on G of the origin 
of S) orhy P ( = origin of S) and the point of the unit euclidean 
sphere which gives the direction of S. The two equivalent forms 
(7.10) may therefore be taken as density for sets of segments of 
geodèsic lines. 

For example, let us consider the set of oriented segments S with 
the origin inside a fixed domain D. The integral of the left of (7.10) 

gives 2 / X dG, where X denotes the length of the are of G which 

lies inside D (the factor 2 appears as a consequence that dG means 
the density for non-oriented geodèsic lines). The integral of the 
right is equal to iwV, where V is the volume of D. Consequently, 
we have the following integral formula 

(7.11) ¡ \dG = 2wV, 

where the integral is extended over all geodèsics which intersect D. 

7.3. Some integral formulas for convex bodies in spaces of constant 
curvature. Let fís now be a 3-dimensional space of constant curva-
ture k. With respect to a system of geodèsic polar coordinates, 
it is known that the element of length can be written in the form 

(7.12) ds? = dp' + sm' Vkp 
k 

where p denotes the geodèsic distance from a fixed point (origin 



340 L. A. Santcdo 

oí coordinates) and dr representa the length element oi the 
2-dimensional unit euclidean sphere. The volume element has the 
form 

(7.13) dP = sin '^Vkp 
k 

dp A da, 

where da denotes the element of àrea on the unit sphere. 
Let Pi, Pi be two points in Ri such that there is only one 

geodèsic G which imites them. Let pi, pt be the abscissas on G of 
Pi and Pi. With respect to a system of geodèsic polar coordinates 
with the origin at Pi, the element of volume dP» has the form 

sin' Vk\p%- pi\ 
k (7.14) dPi dpt A da. 

By exterior multiplication by dPi, we have, in consequence of 
(7.10), 

(7.15) dP, A dPi = s^ ' ^^JP ' Pil dpi A dpí A dG. 

This formula is the work of Haimovici (27). 
Let D he & convex domain of volume V (that is, it contains, 

with each pair of its points, the arc of geodèsic, assumed unique, 
determined by them) and consider all the pairs Pj, Pi inside D. 
The integral of the left side of (7.15) is equal to V^. If X denotes 
the length of the arc of G which lies inside D, then by calculating 
the integral of the right side we have 

/^' ^^ sin» Vk\p2- pil dpi dpí = I (\^ - I sin» v^x) . 

Henee, we have the integral formula 

(7.16) i I X̂» - ^ sin' VÀx) dG = 27», 

where the integral is extended over all geodèsics which intersect D. 
For the elliptic space (k = 1), this formula reduces to 

(7.17) J (X» - sin» X) dG = 27», 

and for the hyperbolic space (A = — 1), 
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(7.18) f (sinh'X - X«) dG = 2F«. 

For the euclidean space (¿ = 0), passing to the limit for k 
in (7.16) we get 

(7.19) f\*dG = 6V^, 

which is a formula of Herglotz [Blaschke (3)]. 
Formulas of this kind refemng to convex figures in the plane or 

to convex bodies in the euclidean space were first obtained by 
Crofton (7), considered the creator of the integral geometry. A 
great deal of them were given successively by several authors: 
Lebesgue (34), Blaschke (3), Massoti Biggiogero (38-42). Paper 
(38) contains an extensivo bibliography. 

The generalization to spaces of constant curvature is less known. 
However for certain types of formulas, the treatment in elliptic 
space is more satisfactory than that in euclidean space, owing to 
the possibility of dualization. Let us consider the following ex-
amples. 

In the elliptic 3-dimensional space, all geodèsics are closed and 
have the finite length ir. The planes have ñnite àrea 27r. Since any 
geodèsic intersects a fixed plane in one and only one point, the 
formula (7.8) gives the measure of the set of all geodèsics of the 
space: 

f dG = 2ir«. (7.20) 

Let D he a convex body of àrea F and volume V and let us con­
sider the set of geodèsic segments of length v which intersect D. 
The integral on the left of (7.10) extended over this set making 
use of (7.8) for n — 2, has the value 

(7.21) f dGdt = irf dG = ÇF, 

and the integral on the right is 

(7.22) J dP A d<r = 2irV + j * dP, 
P^D 

where * denotes the sòlid angle imder which D is seen from P 
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(P exterior to D). From (7.21) and (7,22), we deduce the integral 
formula 
(7.23) f ^dP = WF - 2TV. 

Let us now see which formula corresponds to (7.11) by duality. 
Let M, F be the integral of mean curvature and the àrea of the 
boundary of D. For the dual convex body D* it is known that we 
have 
(7.24) F* = ÍT-F, M* = M, F* = ir« - iíf - 7. 
By duality to each straight line (geodèsic) G corresponds another 
straight Une G* and, henee, if we use (7.24), formula (7.11) gives 

/ (ir - *>*) dG* = 2ir(7r* - M* - V*), 
a*nD*=o 

where v* denotes the angle between the two supporting planes of 
D* through G* and the integral is extended over all geodèsics G* 
exterior to D*. Taking into account (7.20) and (7.8), and replacing 
G* by G, we get the integral formula 

(7.25) f <pdG = l'n{M+V)-\·n'^F, 

which has no analogue in the euclidean geometry, 
Similarly, as dual of the formula (7.17), we have 

(7.26) ¡ {<(? - sin« v) dG = 2(M + Vy - iir^F, 

where, as in (7.25), <p denotes the angle between the two supporting 
planes of D through G and the integral is extended over all geo­
dèsics which do not intersect D. For the integral geometry in 
spaces of constant curvature, see Petkantschin (48), and (53), 
(54), and (59). 

8. SUPPLBMENTARY REMAKKS AND 

BIBLIOGRAPHICAL NOTES 

8.1. General integral geometry. The integral geometry has its 
origin in the theory of geometrical probabilities [Crofton (13), 
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Deltheil (14), and Herglotz (29), and it was widely developed by 
Blaschke and his school in a series of papera quoted in Reference 
(3). The inclusión of the methods and resulta of the integral 
geometry within the framework of the theory of homogeneous 
spaces (as we have done in Section 2) is the work of Weil (73) and 
(74), and Chem (7). After their work, the measure theory in 
groups and homogeneous spaces became of fundamental interest 
in integral geometry. Every new result in that direction can be 
applied and probably exploited with success to get integral geo­
mètric statements; at least, it is sure that the integral geometry 
constitutes the most abundant source of examples [Nachbin (44) 
and Helgason (28, Chap. X)]. 

The inveree problem of finding a general formulation of certain 
particular formulas of integral geometry (Crofton's formulas) is 
also an interesting one [Hermann (30) Legrady (36)]. A very 
simple example follows. We have seen that the kinematic density 
for the group of motions SDï of the plañe is dK = dP /\ da (1.11). 
From the point of view of the homogeneous spaces, dP is the 
density of the space SDï/SDïi, where SDïi denotes the group of rota-
tions about a fixed point and da is the density of SDíi. If we write, 
symbolically, dK = MÏ, dP = d(5K/2)íi), da = dSDïi, the formula 
(1.11) gives daJi = d(S!)?/iKi) A dSKi, which induces us to ask if it 
will hold for a general group ® and its subgroup fl. In this particu­
lar example, it is well known that the formula d@ = d(®/B) A dfi, 
in fact, holds for any locally compact topological group ® and any 
closed subgroup fl of ® [Weil (73, pp. 42-45) and Ambrose (2)]. 

8.2. Sets o/ manifolds. Some problems of integral geometry may 
also be presented under the foUowing form. Let V denote a dif-
ferentiable manifold and F a family of submanifolds in it. Firat 
we ask for the existence of a transformation group @ of F onto 
itself which transforms the elements of F onto elements of F. 
Then, if such a group exists, we ask for a measure of sets of 
varieties of F invariant under @. We shall give two simple ex­
amples. 

Examples 

1. Let V be the euclidean plañe E2 and F the family of aU 
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circles of it. The group & is known to be the group of similitudes 

(8.1) x' = p{x coB<p — y sin ip) + a, 

y' = p(xBm(p + y cos <p) + b, 

which depends on the 4 parameters a, b, p, and <p. This group can 
be represented by the group of matrices, 

tpcos^ —p sm 
p sin v» p cos 

0 

in <p o\ 
os <p 6 1, 
0 1 / 

and by the method of Section (2.2), we find immediately that the 
forms of Maurer-Cartan are 

dp , cos <p j , sin <p „ 
0)1 = —» <02 = (Up, ws = aa -\ ao, 

P P P 
sin <p j , cos <p j , 

W4 = — - aa H db. 
p p 

The similitudes which leave invariant a given circle are charac-
terized by a, 6, p = constants, and, consequently, the system (2.3) 
is cüi = 0, £i>j = 0, W4 = 0. The density for sets of circles (of center 
a, b and radius p) invariant under the group of similitudes results: 

,-^ _ da A db /\ dp 
P" 

2. Let V be the real projective plane and F the family of non-
degenerate conics in it. Then the group G is the projective group 
and the density for conics is (61), 

dooo A dodi A dom A dan A dau 
dC == 

3A« 

where A = det (0,7) and the equation of the conic is assumed to be 

oooXo + 2(hixy + Oiij/" + 20022; + 2aiiy + 1 = 0. 

Other examples of this kind have been given by Stoka (63-68). 
For sets of degenerate conics, see Luccioni (37). 

8.3. Integral geometry of spedcd groups. The mètric (euclidean 
and noneuclidean) integral geometry is the best known; however, 
other cases have also been investigated. The integral geometry 
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of the unimodular affine group of the euclidean space onto itself 
leads to certain afSne invariants for convex ,bodies (62). The in­
tegral geometry of the projective group has been considered by 
Varga (70) and is pnrsued in (55); that of the symplectic group has 
been studied by Legrady (35). 

In the last years, Gelfànd and his school have largely generalized 
the ideas of the integral geometry and used them in problems of 
group representation (21). 
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