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1. Introduction. In an n-dimensional space with several affine connections *I'¢j
(¢ =1,2,3,...) it is possible to define certain tensors analogous to the ordinary curvature
tensor. They may be obtained as coefficients of the generalized Ricci identities of the olas-
sical Riemannian geometry, as was done by the present author in a previous paper (Stantald,
1954). Recently, following a similar way, Sen (Sen, 1964) has obtained new tensors and new
quantities, which he applies to get generalized forms of the equations of the unified field theory

of Einstein, as developed by Hlavat)" (Hlavaty, 1957).

In the present paper we consider especially the case of two connections °I', I' and
obtain séeveral tensors (among them those of Sen) and certain properties of these tensors.

2. Generalized Covariant Differentiation. Let 4; be a covariant vector in an
n-dimensional space in which several affine connections °T'y} (¢ = 1,2, 3, ...) are given.
We shall set throughout the paper

“Ty = Ty (2.1)
The covariant derivative of 4; with respect to I' is
A]{; §= A(,I—-IP"A, (2.2)
where a semi-colon indicates covariant differentiation and a comma ordinary partial
differentiation.

A further covariant differentiation, first with respect to *I" and then with respect
to I yields
A{ = (e, p="Ti§jad—T§A4s, 3) =T § (A, j—~'Th;4s)
’ — T4 m—'Timdy). (2.3)
Analogously we have
Aﬂ; = (A, ;=T j 4s—T"34,, )~ T Am, s—*Thir4s)
6

—ST) (4, m— ‘Timd,). 2.4)
From (2.3) and (2.4) we deduce
Ai; ‘»—Agﬁ M= A(*Th, ;=T s+ Tomgt TP —Tomp T
FICm TR —Cim A7) + A, m(*TAP =T R)+ A, S(‘TE—TR)
+d4m, A(*TY-1TP). (2.5)
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In order to set the right member as a sum of tensors, we put
Ab "= A'sl; m+7F3mAu An, §= A'a'; ri-spfnj An Am, A= A-’ni h+'F:M 4, (2-6)

and we get the following generalized identities of Ricoi
Ai;‘A—Az, y = A;Qfﬂ’(l, 2,..., 9)+A-‘;, ,,,(‘I‘,'{}—‘I‘:’i)
5

+Am; jOTR—TR)+ Am; W(CTH—17) 2.7
where 8 d

(1, 2, ..., 9) = T, y— Ty, 4 +'Doms* TR — T2, T+ TR TR
— TR+ TR — TR+ (TR — TR+ T (TG —1T7). (2.8)
From (2.7) it is olear that Q; (1,2, ..., 9) is a tensor for any *‘I'@ =1, 2, ..., 9).

Prooceeding in like manner with a contravariant vector A% we get the same formula
(2.7) with the tensor

(1, 2, ..., 9) = 4T, ;=T A — Do T+ T2 42T, T
—A i TR+ ( Ty — T TR+ (T — *T%n) ST+ "Tin(*T R —3T'RR) (2.9)
instead of (2.8).
Henoce we have the following theorem

Theorem. In order that the generalized covariant differentiation of all vectors with respect
to the connections °T' (@ = 1, 2, ..., 6) taken sn the order indicated in the left side of (2.7) be com-
mulalive, it 18 necessary and sufficient that

=3, '=1I", ' = %D (2.10)
and that
Rbh(lr 2,3) = Q’JR(L 2,3,21,3,7,8,9) =0, : (2.11)
where the tensors Riy(1, 2, 3) have the form
R4(1, 2, 3) = Th,;—'Tha+ Loy TR— T T} + (T — Tl )*TR. (2.12)

3. The Case of two Connections. Let us consider the case of a space with only
two connections *I', °I'. We wish to write down all possible tensors (2.8) where the indices
1,2, ..., 9 must be either @ or b. In order to do that we introduce the following tensors

*84 = STy —oT%, b3y = Py —*Y, T4 = TY(a, b) = *TY—°*TY (3.1)

Rin(@, b; ¢) = Tl y—T4 s+ 1% TR— T T — T4, T} (32)
where ¢ can have the values a, b, a’, b’ (2.1).

Notice that

Blp(a, a; ¢) = Ri(a), Bia(d, b; o) = Rin()
are the ordinary ourvature tensors with respect to the conneoctions *I', ’T' respectively.
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Then, a rather long but straightforward computation shows that all the tensors
Qs (1, 2, ..., 9) reduce to linear combinations of the following tensors

Tin’St TimTR, Rya(a, b;c) (c = a,d,a’,d') (3.3)
sncluded the isomers of T4, T (i.e.. those tensors obtained by changing the location of the sndices).
Among the tensors RY; (a, b; c) we include RY; (a, a; c), RYy, (b, b; ¢) and Ry, (b, a; c).

Therefore in the spaces with two affine conneotions *I", °I" besides the ordinary curva-
ture tensors R, (a), Ry, (b) play a fundamental role the tensors Riy (a, b; ¢), given by (3.2).

If we wish to eliminate the connection °I", we take the sum Ri, (a, b; ¢)+ R (b, a; ¢)
and having into account that T (a, b) = —T7; (b, a), we get the tensor

1Rey, = Reyj(a, b; ¢)+Roya(d, a; ) = Ty, ;42T
=0Ty A= Ty a+ T TR+ T5 TR — T, T — T T, (3.4)

which, up to a factor }, coincides with the first tensor of Sen (Sen, 1984). The second tensor
of Sen is

'Ry = ‘Rip—ToTh (3.5)

The tensors R};\(a, b; ¢) satisfy the following identities
Ripla, b; c)—Riyfa, b; ¢;) = R+ Tiu(“TH—TR) (3.6)
Risla, b; o)+ Riyy(b, a; ¢,) = Ti(TY—°TR). (3.7)

In particular, we have
Ry(a, b; c)—Riyla, b; ¢') = 'Ry, (3.8)
Riy(a, b; c)+Ripy(b, a; ¢’) = 0. (3.9)
From (3.9) and (3.4) follows the relation of Sen (Sen, 1964)
1R+ 1Ry = 0.
4. Contracted Tensors.
From (3.2) we deduce the following contracted tensors
Ry(a, b; ¢) = RYy(a, b; ¢) = °T'Y, j—*Ty, ,+°T%,Th

— ST I —T4,° T (41)
R*,(a, b; ¢) = RYya, b; c) = °T'Yy, ,—OTY, 408, T — T4 I — T}, ' (4.2)
R**(a, b; c) = Riyla, b; c) = *Ty (—°Ty, ,—T5,T%. (4.3)

which satisfy the following identities

R*y(a, b; c)+Ry(b,a;¢') = 0 : (4.4)

R**,(a, b; ) +R**4(b, a; ¢') = 0. (4.5)
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5. The two connections of & Group of Lie. A well known example of spaces
with two connections is the space of the simply transitive Lie groups; see, for instance
(Eisenhart, 1933, p. 192-198) and (Schouten, 1954, p. 185-191). The two connections are
in this case alternate to each other, that is

Yy = Ty = Ty (6.1)
If we denote by I'y; the symmetric part of *I'j; and by Qj; its tensor of torsion, then
Ty = I'y+ay, Ty = Iy—aj;. (6.2)
The tensor {3.2) becomes
Ripla, a’; a) = Bip+Qia; 3+ QY5 s+ Qa0 — Qo GR—201a (00 (6.3)

where BY;; denotes the ordinary curvature tensor of the symmetric connection I' and we indi-
cate by a semi-colon covariant differentiation with respect to the I,

Having into account the known identities

Bj+Blyy =0, Bi+BjptBhy =0  (54)
from (6.3) we deduce

Ry(a, a’; a)+Rhy(a, a'; a) = 2(Qh; ;4-0Q354) (5.5)

Ripa, a’; a)+R;,i(a, a'; a)- R}, i(a, a'; a) (5.6)

= 4(Q; Q% + 200+ Q5:Q70)-
When Ry, (a, a’; a) = 0, from (5.5), (5.6) and (5.3) we deduce
Qi y+0hia =0, Bl = Q. QR. (6.7
If, moreover, R}, (a, a; a)=0, an analogous computation showsthat 0,; 3= Qi a=0.
Consequently we have 0f,;; = 0 and a known theorem of Eisenhart (Eisenhart, 1933, p. 197)
may be stated in the following terms :

Theorem. A necessary and sufficient condition that an asymmelric connection oI
determines a simply transsitve Lie group is that the equations \

Rila,a;a) =0, (a,a’;a) =0 (5.8)
be satisfied. ur i
Other tensors which may be useful are the following

Rya(a, a'; a') = Ri(a, a’; a)+4Q}0R (5.9)
RY\(a', a; a) = —Rjjy(a, a’;a’) (5.10)
Rip(d', a;0') = —R'yy(s, a'; a) : (6.11)

If we represent by °T'}, the symmetric connection 'Yy, by direct computation we get
Riy\(a, 0; @) = Bin+0hi j—QimaJk (5.12)
Ri(a, 0; a’) = B+ Qi ;4 Qa0 (6.13)
R0, a; a) = Bijn—Qis; 4+ Qim0 (5.14)
R0, a; a') = Bij— Qs j— QO (5.18)
Ria(a, 0; 0) = Bin+q; 5 (5.18)

Ryx(0, a; 0) = Bya—ly: » (5.17)



SPACES WITH TWO AFFINE CONNECTIONS 7

Consequently, we have :

Theorem. All generalized curvature tensors (3.2) which may be obtained with the con-
nections °T, *T, OT' = I' are linear combination of the tensors

szh’ Qh;,, Q:,,‘Qﬂ (518)

6. Another Example. Let us consider the case of two connections °I', °I' which
define the same parallelism in the space. Then we have

oY) = T'y+ 03y (6.1)
where v,&j is an arbitrary covariant vector (Eisenhart, 1927, p. 30).
In this case we have

Rinla, b; ¢) = Rig(a) =815 wle) (6.2)

Riypa, a; ¢) = Riy(a) (6.3)
Ryu(d, b; ¢) = Ryp(a)+3%¥ary— V15 ») (6.4)
R, a; ¢) = Riyy(a)+84y; 4(¢) (6.5)

where we have indicated by y, ; ; (c) covariant differentiation with respect to °I'.  The
last identities show the following

Theorem. AU generalized curvature tensors (3.2) corresponding to connections which
define the same parallelism, differ among them only by a linear combination of tensors of the
Jorm 8Yy;; , where ; is an arbitrary covariant vector and the covariant derivative is taken with
respect to any one of the given connections.

Finally let us consider the case of two symmetric connections which define the same

paths. According to Eisenhart (Eisenhart, 1927, p. 56) and Schouten (Schouten, 1954, p. 156)
the connections are then in the relation

PTY = OTY+8i,+ 93 (6.6)
where i, is an arbitrary covariant vector.

The tensors Rj, (a, b; ¢) (3.2) become

Rin(a, b; ¢) = Ryn(@)—8Wriia— 8¢ a+(TR— TS m+30V0) 6.7)
Ryb, a; 0) = Rip(@)+80y 3+ 83; ;— (TR —TM@5¥i+8iYm) (6.8)

Ry, b; ¢) = Bya(@)+04¥n, 5— Vs 3)+88(V; 1= Vrelr))— 8}V a—Via) (6.9)
where the covariant derivatives are with respect to the symmetric connection °T'.

From this result, by considering the cases ¢ = a, b we have :

Theorem. AU generalized curvalure temsors (3.2) corresponding to two symmetric
connections which define the same paths, differ among them by a linear combination of the tensors
8iWa: 5, OiYaYy, where ;48 an arbitrary covariant veclor and the covariant derivatives are with
respect to *T".
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