
INTEGRAL GBOMBTRY ON SÜRFACES OF CONSTANT 
NEGATIVE CURVATURE 

BY L. A. SANTALÓ 

1. Introduction. We use the expression "integral geometry" in the í<eiiNC 
given it by Blaschke [4]. In a previous paper [11] we generalized to the sph' w 
many formulas oí plañe integral geometry and at the same time applied thenc 
to the demonstration of certain inequalities referring to spherical curves 

The present paper considers analogous qüestions for surfaces of c(Jii»tiU)t 
negative curvature and consequently for hyperbolic geometry [1]. 

In §§2-7 we define the measure of sets of geodèsic lines and the cu -̂ mutic 
measure, making application of both in order to obtain various integral í -mu]»» 
such as, for example, (4.6) which generalizes a clàssic result of Crofton f< r nlane 
geometry and (7.5) which is the generalization of Blaschke's fundanu?rital 
formula of plañe integral geometry. 

In §8 we apply the above results to the proof of the isoperimetric ipeity 
of geodèsic circles (inequality (8.4)). In §9 we obtain a sufficient condi th;.t 
a convex figure be contained in the interior of another, thus genera ;; to 
surfaces of constant negative curvature a result which H. Hadwiger [8] > úned 
for the plañe. 

For what foUows we must remember that on the surfaces of curvature A « — 1 
the formulas of hyperbolic trígonometry are applicable [2; 638], that is, for a 
geodèsic triangle of sides a, b, c and angles a, 0, y, we have 

coeh a — cosh b cosh c — sinh b sinh c eos a, 

(1.1) sinh a/sin a = sinh 6/sin /3 « sinh c/sin y, 

sinh a eos /3 » cosh b sinh c — sinh b cosh c eos a. 

2. Meaiure of seto of geodedci. Let us consider a surface of constant 
curvature K " —1. Let O be a fixed point on that surface and O a geodèsic 
which does not pass through O. We know that through O passes only one 
geodèsic perpendicular to O [6; 410]. Let v be the distance from O to G measured 
upon this perpendicular. We shall cali $ the angle which the perpendicular 
geodèsic makes with a fixed direction at O. We define as the "density" to measure 
sets of geodèsics the differential expression 

(2.1) dO » cosh V dv de, 

that is, the measure of a set of geodèsics will be the integral of the expression 
(2.1) extended to this set. 
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To admit this definition it is necessary to prové that the measure does not 
depend on the point 0 or on the direction orígin of the angles 9. 

Let A be the point in which the normal geodèsic traced through 0 cuts G. 
We shall consider another point 0 | and denote by Ai the analogous point in 
which the normal traced through Oy cuts 0. Call a the angle formed by the 
geodèsic OOi and the direction origin of angles at 0; analogously, ai will be the 
angle which the same geodèsic OOx makes with the direction origin of angles at 
0 | . For brevity write 

OA - V, 0,i4, » r,, OOi'^ p, 0-4, - n, 0 ,4 - ¥, AAi - X, 

where the left sides are the arcs of geodèsics. We can also state 

<fi " angle OAtOi , i> -« angle OAOi , 9 — a ^ angle AOOi , 

r — (9¡ — a,) " angle OOiAi . 

With these notations (Fig. 1) the third formula of hyperbolic geometry (1.1) 
applied to the triangle 00|i4i gives 

(2.2) sinh n cos ^ » cosh p sinh v, + sinh p coeh v, cos (0, — a,). 

In the rectangular triangle OAAi the second formula (1.1) gives sinh n « 
sinh v/cos ^ and in consequence (2.2) may be wrítten as 

(2.3) " sinh V >• cosh p sinh v, + sinh p cosh v, cos (9i — a,). 

Analogously 

(2.4) sinh t>, » cosh p sinh v — sinh p cosh v cos (9 — a). 

In order to pass from (2.3) to (2.4) we changed the sign of the second term of 
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the right side because in the quadrilateral OOiAiA the interaal angle AOOi 
has valué ff — a, while angle 00,Ai "* r — {$¡ — «,). 

From (2.3) and (2.4) an easy calculation gives 

/2 5) g(p, g) _ coeh* t>, sin (g, - a,) 
d(t)i , $i) coeh' v sin (0 — a) 

The third formula (1.1) applied to the triangle OAAi gives sinh /u sin ^ » 
cosh V sinh X and in the triangle OOiX, we also have sinh ^/sin (0i — a,) » sinh 
p/sin ^. These two equalities give 

cosh V sinh X >B sinh p sin (0, — a,), 

«nd by analogy 

cosh r, sinh X — sinh p sin {0 — a). 

From these last equalities we deduce 

cosh V sin {6 — a) " cosh v, sin (tfi — aO, 

and if we take into account this equality, the Jacobian (2.8) has the valué cosh 
v,/cosh V and consequently 

cosh vdvdO >* cosh Vi dvi d$i , 

that is, the density (2.1) and also the-measure of any set of geodèsics are inde­
pendent of the point O and the direction orígin of the angles 0. 

3. Meuure of tíxt geodeiici which cut a Une. In the preceding section we 
determined the geodèsic O by its codrdinates v, $. If O cuts a fixed curve C in 
a point P, it can also be determined by the abscissa « of the point P upon C, 
that is, by the length of the are of C between P and an origin of ares and the 
angle ^ formed at the point P by the curve C and the geodèsic O. We shall 
express the density (2.1) as a function of a, tp. 

Since through any point there is only one geodèsic perpendicular to another 
geodeñc, O is also determined by «, 9. We shall pass fírst from v, 0 to a, B and 
afterwards to «, ip. In the system of curvilinear codrdinates whose curves v i* 
const. are the geodèsics normal to OA (the letters desígnate the same points as 
in §2) and the curves u — const. are their orthogonal trajectòries, we have [2; 335] 

(3.1) da* - du* + cosh'u dv*. 

Consequently, if the geodèsic O (i; « const.) forms an angle v with the curve C, 
we have 

coiAíudv 
sm^ -i da 

from which 
j s i n » . 
dv " —Tf^da. 

coshu 
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Therefore (2.1) may be written as 

(3.2) dO = cosh r -^^ da de. 

In place of 6 we wish now to introduce the angle v>- Let us cali p the are of 
geodèsic OP, a the angle which this are OP makes with the direction origin of 
angles at O, and oi the angle which OP makes with the curve C (Fig. 2). In 

FlQÜRE 2 

the rectangular triangle OAP we have angle AOP '^ O — a, angle APO » «i — ,̂ 
and from (1.1) we deduce 

cot (a, — ip) mt cosh p tan (fi — a), 

from which, by differentiation, we get 

(3.3) 
dip cosh p d9 

sin (oi — <p) eos (ff — o)' 

But, in the same rectangular triangle OAP 

eos (tf — o) "= cosh M sin (o, — ^), cosh p •« cosh M cosh D 

and as a consequence 

coeh p sin' («i — ») _ cosh v 
eos* (tf — a) ~ cosh «* 

Substituting in (3.3), we have 

(3.4) 
j - coeh « j dB = —r— d ,̂ coeh w 
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and the density (3.2), after the change of the variable 6 for the variable <fi, will 
take the form 

(3.5) dG ^ sin <p ds dip. 

This expression of the density for sets of geodèsics which cut a fixed curve C 
has the same form as for the density for straight lines of the plañe [4; 13]. 

In order to get the measure of all the geodèsics which cut a fixed curve C oí 
length L we must intégrate (3.5) with respect to a from Q to L and with respect 
to <p from O to T; the valué of the integral is 2L. In this way, if the geodèsic G 
cuts the curve C in n points it will be counted n times. As a consequence we have 

(3.6) j ndO = 2L, 

the integration being extended over all the geodèsics which cut the curve C. 
We say that a closed curve C is convex when it cannot be cut by any geodèsic 

in more than two points. In this casé, in (3.6), n = 2 always and we find that: 
The measure of the geodésica cutting a convex curve ia equal to the length of thia curve. 
This result and formula (3.6) have the same form for the plañe [4; 11] and for 
the sphere [4; 81]. 

From (3.5) may be obtained also an integral formula which can be considered 
as the "dual" of (3.6). Multiplying both sides of (3.5) by the angle <f> and in-
tegrating over all valúes of a and <p {O < <p < r) ve find that the integral of the 
right side has the valué 

I da I <p sin ipdtp = xL 
•'o •'o 

and in the left side for every position of G we must add the angles <Pi (O < <Pi < T) 
which G makes with C at the n intersections. Henee, we have 

/ I Vi dG = TL, 

the integration being extended over all the geodèsics which cut C. 

4. Density by pairs of points and integral fonnula for chords. The density 
to measure sets of points is equal to the element of área; we shall represent it by 
dP. Let US consider a pair of points Px ,P,. In order to measure sets of pairs 
of points we shall take for density the product of both densities, that is, dPidP^. 
Through P, and P» only one geodèsic G may pass. Once this geodèsic is fixed, 
the points P i , Pj are determined by their abscissa « i , u» measured upon G from 
an arbitrary orígin. We wish to express the product dPidP, by means of dG 
and dui, dut. 

In a system of polar geodèsic coordinates the element of are is expressed 
[2; 335] by 
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(4.1) ds'^ dr'+ ejah'r d,p' 

and thus the element of àrea is sinh r dr d<p. When P^ is fixed, the differential 
of the àrea dP^ expreased in the system of polar geodèsic coòrdinates of origin 
P, is 

(4.2) dPi = sinh r dr d,p, 

r being the length of the arc of geodèsic G which joins P, and P , , that is, r = 
I M, — Ui\. From any fixed point 0 we trace the geodèsic normal to G and as 
in §2 and §3 we call A the foot of this perpendicular. 

As before, we call v the arc OA and 0 the angle made by OA with a fixed 
direction traced by 0. P, is supposed to be fixed. In the expression (4.2) we 
may introduce the angle B in the place of the angle ip because the relation between 
them is the same (3.4) already found in what precedes. Then we have 

(4.3) dP, = sinh r ^S^ ¿r ¿g, 
coshu, 

In the system of rectangular geodèsic coòrdinates in which the curves v » 
const. are the normal geodèsics to OA and the curves u = const. are their orthog-
onal trajectòries, the düTerential da has the form (3.1) and the differential of 
the àrea for the point P, is 

(4.4) dPi = cosh Ui du, dv, . 

Taking into account (2.1) and substituting for symmetr>' dut instcad of dr, 
from (4.3) and (4.4) we deduce 

(4.5) dP, dPi = sinh r du, dui dG, 

G being the geodèsic which joins P, and Pj and r '^ \ u, — U2 \ being the length 
of the arc PiP, . This differential formula (4.5) permits us to generalice to 
Crofton's formula for chords surfaces of constant negative curvature. Let C 
be a convex curve of àrea F; P, , Pj two interior points to C; and O the geodèsic 
which joins them. We desire to intégrate (4.5) over all pairs of points contained 
in C. The integral of the left side is evidently F'. To calcúlate the integral of 
the right side we observe that, if «r represents the length of the arc of the geodèsic 
G which is interior to C, we have 

/ / sinh \ u, — u, \ du, dih " 2(8Ính a — <r) 
Jo Jo 

and consequently 

(4.6) f (sinh <r - <r) dO = Jí*. 
a-Cito 

This formula (4.6) is the generaliíation of Crofton's formula for chords. 
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U K is — \/R' instead of — 1, we have 

íi'^ñ-Éf-m-
O-CHO 

Multiplying both sides by R* and letting R —* » , we find 

(4.8) / ff* dG = 3F', 
o-cno 

tlG being the density for straight Unes on the plañe and a the length of the 
chord which the straight Une G determines in the figure plañe convex C of área 
F. This formula (4.8) is Crofton's integral for ohords in plañe geomctry (4; 20], 
[7; 84]. 

5. Density for pairs of geodèsics which intersect. If two geodèsics 6, and 
(?, cut cach other at a point P and if Vi and tf, are the coórdinates of G, (i = 1, 2) 
with respect to the origin O (§2) in accordance with (2.1) we have dGi = cosh 
VidVidB, . To measure a set of pairs of geodèsics, we take the integral of the 
oxpression 

(5.1) dGi dGj = cosh Vi cosh V2 dv, d$i dv, ddi . 

The geodèsics G, , Gj may also be determined by their point of interscction P 
and the angles ipi , <pt <vhich they respectively make with a fixed direction at P. 
The angle ^ = | ^1 — ^21 is that formed by G, and G3. If we take into account 
(3.1) when the geodèsic f, , tf, becomes the geodèsic f 1 + df, , Bi , the are u, = 
const. described by the point P has the length cosh «1 dv, . On the other hand, 
if d«2 is the are described upon G, by the intersection of G¡ and Gj, the same are 
is also equivalent to sin ^ dsj . Consequently, 

(5.2) cosh Ui dvi = sin ^ dsj , 

and by analogj-

(5.3) cosh u, dvt « sin ^ dsi . 

Also, if we suppose P fixed, the relation between the angles fl; and ^, is given 
by (3.4), that is, 

(5.4) cosh Vi ddi = cosh Ui d<pi . 

From these equalities and from (6.1) we deduce dGidGj = sin'^ dsida^idipt . 
But sin ip dst dst is equal to the element of the área dP and consequently 

(5.5) dOi dO, «= sin ^ d^i d^, dP. 

This formula which expresses the product of the densitiea of two interaecting 
geodèsics as a function of the density of their intersection point P and the 
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densities of the angles ^, , ^3 at P has the same form as on the plane (4; 17] and 
on the sphere [4; 78]. 

In the cases of the plane and the sphere, as two geodèsics always cut each 
other (the exception of straight paral·lel Unes in the plane has no importance), 
integrating both sides of the formula (5.5) over all the pairs of geodèsics which 
cut a convex curve C, we arrive at Crofton's fundamental formula [4; 18], [7; 78], 
[11]. For surfaces of constant ncgative curvature this rcasoning cannot be 
applied becau.«e we may find sets of pairs of geodèsics of finite measure which 
cut C without intersccting each other in any point P. Nevertheless formula 
(5.5) is of use in obtaining the following integral formula. Let us intégrate the 
two sides of (5.5) over all the pairs of geodèsics which intersect each other in the 
interior of a convex curve C of àrea F. The integral of the right side is 

(5.6) I <iP I / sin I *>, - Va I d̂ Pi d^j = 2rF. 
J Jo •'0 

P<C 

To calcúlate the integral of the left side we first fix G¡ . If we call «r, the length 
of the arc of (r, which is inside C, in accordance with (3.6) the integral of dGi 
extended over all the G, which cut ai has value 2<r, . Thus the integral of the 
left side of (5.5) is equivalent to 2 y* <r,dGt . Equating to (5.6) and writing «r 
and G in place of <r, and G, , we get the integral formula 

(5.7) j cdG = rF. 

From this formula and from (4.6) we deduce 

(5.8) f siahadG = rF + ^F\ 
a-Ctto 

In (5.8) and (5.7) as in (4.6) a is the length of the arc of the geodèsic G which 
is inside C. 

6. Cinematic measure. Hitherto we have only considered sets of points and 
geodèsics. Now we wish to consider sets of elements each of which is formed 
by a point P and a direction ¡p at P. To measure a set of such elements we take 
the integral of the differential form 

(6.1) dC = dPd,f>, 

which is q l̂led cinematic density. For ¡ts defínition on the plane and on the 
sphere, see [4; 20, 81]. 

On the surfaces of constant negative curvature two figures are called "con­
gruent" if they can be superposed by a motion of the surface into itself [2; 333], 
[6; 409]. The position of a figure C is determined by fíxing an element P, <fi 
invariably bound to C. Consequently, the cinematic density serves also to 
measure any set of congruent figures. 
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Let Co be a fixed curve of length Lo and C a mobíle curve of length L. Suppose 
that both curves are formed by a fínite number of ares of continuous geodèsic 
curvature. Calling n the number of intersection points of C and C» , a number 
which depends on the position of C, we wish to calcúlate 

(6.2) = / ndC, 
C-CfO 

where dC is the cinematic density (6.1) referred to the mobile curve C, and the 
integration is extended over all the positions of C. 

We shall require a preliminary formula. Let Co be a fixed curve. For a 
point A oí Co consider the geodèsic which makes with Co an angle O and upon 
this geodèsic take axi &rc AA' = r. If the point A describes upon Co an are 
AB — dso , O and r remaining constant, the end A' will describe A'B' = daó . 
Let 9' be the angle made hy AA' with A'B'. The elements d«o and d«í may be 
considered to be in fírst approximation ares of geodèsics and accordingly we 
can apply formulas (1.1) of hyperbolic trigonometry. Considering only a first 
approximation, we have cosh AB = cosh A'B' — 1, sinh AB = dso, sinh A'B' = 
ds'o. Thus the fírst formula (1.1) applied to the triangle AB'A' gives 

cosh AB' = cosh r + sinh r eos (K dsó , 

and applied to the triangle ABB', 

cosh AB' = cosh r + sinh r eos B dso • 

From these equalities it follows that 

(6.3) eos e' dsó ™ eos O dso 

This is the preliminary formula sought and it is verified whether the ares of 
geodèsic AA', BB' intersect or not. 

We retum now to the calculation of the integral (6.2). Let C, Co intersect in 
point A at angle a (Fig. 3). We fix at C and Co an origin of ares, s being the 
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curvilinear abscissa of A upon C and «o the abscissa of A upon Co . In order 
to determine the position of C, in place of P, <p which figures in (6.1), one may 
substitute «, 80 , a. We wish to express the cinematic density (6.1) with these 
new variables «, So, a- For this we must observe the following. 

Let P be the point invaríably bound to C which figures in (6.1), PA the 
geodèsic arc which unites P with the intersection point A, and d the angle which 
PA makes with the fixed curve Co. If« and a are fíxed and 80 passes from «o to 
«0 + dso , the angle 9 will not vary and P will describe an element of arc de'^ 
with value, according to (6.3), 

(6.4) d8Í = - ^ d 8 o , 
coe 9' 

where C is the angle formed by the prolongation of ^P with the direction of 
d«¿ . Also, « and «o being fixed, when a passes to a + da, the point P describes 
an arc d«" normal to .4P with value 

(6.5) d«" = sinh r do, 

r being the length of the arc of geodèsic PA. This value (6.5) is obtained from 
the expression of the element of the arc in polar geodèsic coòrdinates (4.1). The 
angle formed by the elements dsó and d«ó' is \7t — 9' and as a consequence the 
element of àrea dP expressed by the coòrdinates 80 , « has the value dP •• 
sin {\K — 0') daí dsó', that is, according to (6.5) and (6.4), 

(6.6) dP '^ cmO sinh r d«o do. 

We shall suppose now that, having fixed P, we make Pi4 rotate, and with it 
all the curve C, through an angle dip. The point A will describe an arc .4/1, of 
a geodèsic circle of center P, where AAi » sinh r dip. After tuming through 
the angle dip the curve C will cut Co at the point B and the arc i4,fi is the arc ds 
which has increased in passing from ^ to ^ + d .̂ The infinitesimal triangle 
AA iB may be considered a geodèsic triangle and accordingly the second formula 
(1.1) gives 

d8 sinh r d^ 
coe 0 sin (o + do)' 

that is, 

(6.7) áp~ " Í " . \ d8. 
coe í smh r 

From (6.7), (6.6) and (6.1) we deduce 

(6.8) dC <^ a\n a ds dso da. 

This is the expression sought. The angle o will always be considered between 
Oand w. 
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This expression (6.8) of the cinematic density has the same form as that for 
the plañe [4; 23] and permits the immediate calculation of (6.2). Integrating 
(6.8) over all the valúes of 8, <o i a, we shall have the integral of dC extended 
over all the positions in which C cuta Co, but if in some position C and Co inter-
sect in n points, this position will have been counted n times. Conaequently, 

/ = í n d C " j d « j d 8 o í s i n | a | d a = iLU dso / sin I a I da => 4LLo , 
"O "O J-w 

C-C.fO 

that is, 

(6.9) j ndC " 4LLo . 
C-C.HO 

This formula expresses the generalization to the surfaces of constant negativa 
curvature of Poincaré's formula and it has the same form as in the case of the 
plañe [4; 24] and the sphere [4; 81]. 

The expression (6.8) also permits us to obtain an integral formula which, in 
a certain form, is the dual formula of (6.9). If we multiply both sides of (6.8) 

n 

by a and intégrate over all the valúes of «, «o, « (O < « < ir), the sum ^ a, of 

the angles at which the curves C and Co intersect will appear on the left side 
and the integral of the right side will have the valué 

/ da I d»o I \ a ain a \ da '^ 2rLLo . 
Jo Jo J-w 

Conaequently, 

(6.10) / ¿ a . d C - 2 » L L o . 
C'C,t«0 

It should be noted that this formula also has the same form as in the case of 
the plañe [9; 101] and of the sphere [4; 82]. 

7. Fundamental formula of cinematic measure. On the surface of constant 
negative curvature K ^ — 1, let us consider a closed curve C| of length ¿i 
without double points and formed by a fínite number of ares of continuous 
geodèsic curvature. Let F, be the área bounded by C, . The total geodèsic 
curvature /ií i of Ci is composed of the sum of the inte^tds y KI d«i of the geodèsic 
curvature along the ares which form C, plus the sum of the exterior angles at 
the angular points if these appear. Then the Gauss-Bonnet formula gives 

(7.1) if, - 2ir + F, . 

If Co is another closed curve of área Fo with length Lo and total geodèsic curva-
ture Ko , then Ko ^ 2x + Fo also'. Suppose Co fixed and C| of variable poeitíon. 
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In each position of Ci the intersection of the domains bounded by Co and C, 
will be composed of a certain number of partial domains whose boundaríes are 
formed by arcs of Co and Ci . We represent by Foi the àrea, by Loi the length 
and by Koi the total geodèsic curvature of the domain Coi intersection of the 
domains bounded by Co and d . Coi may be multiply connected (Fig. 4). 

FiauiiE 4 

We wish to demónstrate the integral formula 

(7.2) / A-o, dC^ = MKoF, + K,Fo + UU), 

where dCi is the cinematic density (6.1) with reference to the mobile figure Ci , 
the integration being extended over all the positions of C, in which the domain 
bounded by this curve has any common point with that bounded by Co. 

Formula (7.2) is the generalization on the surfaces of curvature K — —\ 
(that is, the generalization to hyperbolic geometry) of Blaschke's fundamental 
formula of integral plane geometry. The proof we shall give is analogous to 
that given for the plane by Maak [9] and Blaschke [4; 37]. 

Calling Ao< , 8i< the lengths of the arcs of Co and C| which contribute to form 
the boundary of Coi and a, the angles in which Co and C, intersect, by deñnition 
of Koi we have 

(7.3) 
• ' « . I i • ' • i l i 

K! and K\ being the geodèsic curvatures of Co and Ci . Let us consider the 
integral /o " y «ï d«o dCx extended over all the positions in which the point 
«0 belongs to the boundary of Co and is contained in the interior of Ci . This 
int^;ral /o may be calculated in two ways. Having first fixed the point «o , we 
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must intégrate dC, over all the positions of Ci for which this ñxed point is 
interior to Ci ; according to (6.1) this integral has the valué 2rF, ; there 

/ K", dso 
Je. 

of valué Ko remains. Consequently, h = 2TF,/CO . The same integral may be 
calculated in another way. If we first fix C, , the integral J" K", dso extended 
over all the valúes of «o which are interior to C, is the sum 

which appears in (7.3). We must now intégrate the product of this sum by 
dCi . Equating this valué of h to that found before, we have 

[ Z f «í *>o dC, = 2rF,K^ , 
J i •'«.i 

C, 'Ci .<0 

and analogously, for symmetry, must be 

í H í K\ d8, dC, = arFoX, . 
C. ·Ci f 'O 

Taking into account these valúes and (6.10), we have formula (7.2), which we 
wished to prove. 

Formula (7.2) may be written in a more convenient form. For this we must 
calcúlate the integral J" Fo¡ dCi in wfaich Fot is the área of the intersection of Co 
and Ci and the integration is extended over all the positions for which Coi = 
Co-Ci 7̂  0. Let US consider the integral h\ = S dPo dC, , in which dPa is the 
element of área, extended over all the positions in which C, contains the point 
Po interior to Co. Having fixed Po, we find that the integral of dCi has a valué 
2TF, and when Po is varied over all the interior of C» we obtain 7oi = 2irFoF, . 
Also if we fix C, first, the point Po can vary over all the points of the inter­
section of Co and C, . The integral of dPo will then be Foi and consequently 
/oi = y Foi dCi . EJquating the two valúes obtained for hi , we have 

(7.4) / Fo, dCi = 2TFOF, . 

C. 'C. .<0 

By the Gauss-Bonnet theorem, if the intersection of Co and C¡ is composed 
of V simply connected pieces (for example, in Fig. 4, v = 2), we have Koi =» 2x1» + 
Foi and moreover /Co = 2T + F» , /C, = 2» + F, . Substituting these valúes 
in (7.2) and taking into account (7.4), we find 

<7.6) / I- dC, = 2T(FO + F.) + FoF^ + UL, . 
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In particular, if Co and C, are convex, their intersection ÍH always simply 
connected, that is, composed of only one piece. As a consequence •> » 1 and 
we have the result: 

The tneasúre of the positions of a convex figure C, in xohich it haa aome common 
poirit wiih another convex figure C'o ha« the vcdue 

(7.6) f dC, = 2r(Fo + F.) + FoF, + LoL, . 
C · C i f ' O 

In the following sections we shall apply this formula and (6.9). 

8. Isoperimetric propriety of geodèsic circles. On the surface of constant 
negative curvature K — — 1, let us consider a closed curve C which has no double 
points, and which has length L and àrea F. We consider the set of curves con­
gruent to C which have points in conunon with C. Calling M, the cinematic 
measure of the set of these curves which have i points in common with C, we 
can write formula (7.6) as 

(8.1) M, + M, + M,A- ••• = 4TF + F ' + L\ 

since now Co = C, = C. Analogously, formula (6.9) gives 

(8.2) 2M, + 4AÍ, + 6M, + • •. - 4£'. 

From these two equalities we deduce . . . , . , . , . 

(8.3) L' - F ' - '4rF=* ilíl -(- Úí^^ 3iW, + • • • 
• " '''• . » ' • > , , • . " - - i ^ ' ' ^ • • • • 

and, as the Af <, which at^the itteasüre of certain sets, are always non-negative, 
we have 

(8.4) L» - r - 4 T F > 0. 

This is the isoperimetric inequality on surfaces of constant negative curvature 
K » — 1. In fact, from (8.4) can be deduced that for all the curves which limit 
an àrea F the minimum value of the length is (F' -|- 4irF)*. This minimum 
value ¿0 is reached by the geodèsic circles. Henee if Co is a geodèsic circle of 
radius p» we have [6; 404] 

(8.6) Lo = 2T sinh po, Fo =• 2ir(cosh Po — 1) 

and therefore Lj -> Fj + 4irFo. 
This prqpf of the isoperimetric inequality (8.4) does not permit the assertion 

that the geodèsic circles are the only figures for which the equality in (8.4) is 
vàlid. For this we shall give another proof leading to an inequality stronger 
than (8.4). 

Let Po have such a value that no geodèsic circle of radius po is contained in 
the interior of C nor contains C in its own interior. Also let Co be the geodèsic 
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circle of radius po. Calling Af < the measure of the set of circles Co which intereect 
C in »• points, in accordance with (7.6) and (6.9) we have 

(8.6) i»/, + 3Í« + 3 / . + • • • - 2T(F + F,) 4- FF„ + LU , 

and 

(8.7) 2Mt + 4M, + 6A/, + • •. = 4LL„. 

From these equalities we deduce 

(8.8) LLo - FFo - 2ir(F + Fo) ' M, + 2M, + SM» + ••• > 0. 

To abbreviate, we put 

(8.9) A = L» - F" - 4TF, 

where à is the "isoperimetric déficit". Fo and Lo given by (8.5) thus satisfy 

(8.10) Ll - Fl - 4TF« » O, 

with which we easily prove the identity 

(8.11) 2FF0 ^ '̂'» " ^̂ ô " ^̂ "̂ '1 " ^^· ~ ^^'· ~ ^^^ + '̂ ''̂ · 

Taking into account (8.8), we deduce from (8.11) that 

A > ^ (LFo - FLo)\ 

or by substituting for Fo, Lo their valúes (8.5), we get 

(8.12) A > (¿ - F coth \po)\ 

This inequality is veñfied for any po so that no circle of radius po could contain 
C or itself be contained in C. In particular, if p, is the mínimum radius of the 
geodèsic circles which endose C and p< the máximum of those contained in the 
interior of C, we have 

(8.13) A > (L - F coth \p.)\ A > (F coth Jp, - L)\ 

and taking into account the inequality 

(8.14) x'·\-y'> i ( ï + y)\ 

from (8.13) we deduce 

(8.16) A > iF»(coth \p, - coth \p.)\ 

Analogously, taking into account (8.10), we easily prove the identity 

2Ü(A^I'F) [^« - «*» + ^^0 - ^^0^^ 
(8.16) ^^»^*' + '^ 

'^ LLo- FFo- 2w{F + Fo)r 
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and consequently, in accordance with (8.8), we have 

<8.17) A > - i ((4T + F)Fo - LL„y. 
•t'Ò 

If we substitute the vàlues (8.5), we may write this inequality 

(8.18) A > ((4T + F) tanh Jp. - L)\ 

Writing this inequality for p. and p, and taking into account (8.14), we deduce 

(8.19) A > }(4ir + F)*(tanh èp. - tanh èp,)". 

The isoperimetric inequalities (8.15) and (8.19) are stronger than (8.4). 
They make clear that the equality A = 0 can be verified only when PÍ = p. , 
that is, when C is a geodèsic circle. It is thus completely proved that on surfaces 
of constant negative curvature the geodèsic circles are the only curves which 
for a specifíed length endose máximum área. À direct proof of the inequalities 
(8.15) and (8.19) was given by us in [12]. The isoperimetric problem on the 
surfaces of constant negative curvature has also been solved in a completely 
distinct manner in [13]. 

For a surface of constant curvature K = —l/R", the inequalities (8.15) and 
(8.19) are written respectively 

(i) -(I) -*'w·-4w(s'"^à-h"^É• 
(i)"-(l)'-'^|ïï(^+l)Vfe-'^i)' 

Multiplying by R' and making R —* <», we obtain 

(8.20) L' - 4TF > F ' ( - - - ) ' 
^Pi PJ 

and 

(8.21) V - 4»F > T\P. - p,)\ 

which are isoperimetric inequalities for plane fígures. In these, pi is the máxi­
mum radias of those circles which are contained in C and p, the minimum of 
these which contain C. Inequality (8.21) is a clàssic inequality due to Bonnesen 
[5; 63]. 

9. A suficient condition that a convex curve congruent to C be contained in 
the interioc of another convex curve CQ . Let C, be a convex curve of length 
¿1 which limits a domain of àrea F , . Co is another convex curve of length Lo and 
àrea Fo. We wish to ñnd a sufiicient condition that a curve congruent to C, be 
contained in the interior of Co. As in §8, let Mi be the measure of the set of curves 
congruent to Ci which intersect CQ in t points. Mo is the measure of the set of 
curves congruent to C| which are in the interior of Co or which contain Co • 
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According to (7.6) and (6.9) we have 

(9.1) Mo + M, + M, + M»+ ••• = 2T{FO + F.) + F„F. + ULi 

and 

(9.2) 2M, + 4M, + 6M»+ ••• = 4LoL, . 

From these equalities 

(9.3) 2T(FO + F,) + FoF, - UL, = M, - M, - 2M, - • • • . 

If Mo = 0, the left side of this cquality is non-positive. Henee a sufficient 
condition that a curve congruent to Ci contain Co or be contained in Co is 

(9.4) 2T(F„ + F.) + FoF, - LoL, > 0. 

In order to sharpen this result, we first observe that by (8.4) for any C» and C, 

Ll > Fl + 4TFO , L\>F\+ 4TF, 

and henee 

(9.5) LlL] > FoF,(4r + F„)(4T + F,). 

Consider the inequality 

(9.6) LoL. - F.(4ir + F.) > [LlLl - FOF,(4T + F„)(4T + F,)]*, 

whose right side is always real by (9.5). If we square and simplify (9.6), we 
see that (9.4) is also verified. Consequently, one of the two curves Co or C, 
can be contained in the interior of the other. We shall prove that if (9.6) is 
verified, F, < Fo and consequently C, can be contained in C«. In fact, if F, > 
Fo , in aceordance with (9.4), whieh is a consequence of (9.6), we have LoL, < 
4TF, + FoF, and the inequality (9.6) is not verified since the left side must be 
positive. Consequently, 

Co and C¡ being two convex curvea on the aurface of curvature K = —1, the 
inequality (9.6) w a sufficient {bul not neceaaary) condition that a curve congruent 
to C, he contained in the interior of Co . 

In particular, if C, is a geodèsic cirele of radius p, , taking into account the 
valúes (8.5), we can write the inequality (9.6) as 

(9.7) Lo - (4T + Fo) tanh ip. > (Lj - FO(4T + Fo))* 

and this inequality is a sufficient condition that Co contain in its interior a 
geodèsic cirele of radius pi . 

Analogously, 

(9.8) L, - F, coth èpo > (L? - F . (4T + F,))» 

is a sufficient condition that Ci be contained in the interior of a geodèsic cirele 
of radius po. 
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If the curvature of the surface is ÍC = — 1/R*, the corresponding condition 
(9.6) can be written without difficulty. Multiplying both sides by W and 
making R —* <», we obtain 

(9.9) L„L, - 4TF . > {LlL\ - lerVoF.)», 

which is a suíficient condition that a plañe convex curve congruent to Ci of 
àrea F, and length L, be contained in the interior of Cg whose àrea and length 
are FQ and Lo respectively. 

Condition (9.9) for the plane has been obtained by H. Hadwiger [8]. For 
the analogous condition for the curves on the sphere see [10]. 
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