INTEGRAL GEOMETRY ON SURFACES OF CONSTANT
NEGATIVE CURVATURE

By L. A. SANTALS

1. Introduction. We use the expression ‘“integral geometry’ in the seunse
given it by Blaschke [4]. Ina previous paper [11] we generalized to the sph: re
many formulas of plane integral geometry and at the same time applied these
to the demonstration of certain inequalities referring to spherical curves

The present paper considers analogous questions for surfaces of counstant
negative curvature and consequently for hyperbolic geometry [1].

In §§2-7 we define the measure of sets of geodesic lines and the cu:mutic
measure, making application of both in order to obtain various integral {- “mulas
such as, for example, (4.6) which generalizes a classic result of Crofton for vlane
geometry and (7.5) which is the generalization of Blaschke’s fundamental
formula of plane integral geometry.

In §8 we apply the above results to the proof of the isoperimetric - perty
of geodesic circles (inequality (8.4)). In §9 we obtain a sufficient condi that
a convex figure be contained in the interior of another, thus genera’ 2 to
surfaces of constant negative curvature a result which H. Hadwiger [8]« ined
for the plane.

For what follows we must remember that on the surfaces of curvature K =-1
the formulas of hyperbolic trigonometry are applicable [2; 638), that is, for a
geodesic triangle of sides a, b, ¢ and angles a, 8, v, we have

cosh a = cosh b cosh ¢ — sinh b sinh ¢ cos «,
(1.1) ginh a/sin @ = sinh b/sin 8 = sinh-¢/sin v,

ginh @ cos 8 = cosh b sinh ¢ — sinh b cosh c cos a.

2. Measure of sets of geodesics. Let us consider a surface of constant
curvature K = —1. Let O be a fixed point on that surface and G a geodesic
which does not pass through 0. We know that through O passes only one
geodesic perpendicular to G [6; 410). Let v be the distance from O to G measured
upon this perpendicular. We shall call 8 the angle which the perpendicular
geodesic makes with a fixed direction at 0. We define as the “density’’ to measure
sets of geodesics the differential expression

2.1) dG = cosh v dv dé,

that is, the measure of a set of geodesics will be the integral of the expression
(2.1) extended to this set.
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688 L. A. BANTALG

To admit this definition it is necessary to prove that the measure does not
depend on the point O or on the direction origin of the angles 8.

Let A be the point in which the normal geodesic traced through O cuts G.
We shall consider another point 0, and denote by A, the analogous point in
which the normal traced through O, cuts G. Call a the angle formed by the
geodesic 00, and the direction origin of angles at O; analogously, «, will be the
angle which the same geodesic 00, makes with the direction origin of angles at
0, . For brevity write

OA=9y, OA, =v,, O00,=p, OA,=yu OA=y A4 =),
where the left sides are the arcs of geodesics. We can also state
¢ = angle 0A,0, , ¥ = angle OAOQ, , 0 — a = angle A00, ,
* — (6, — a;) = angle 00,4, .

With these notations (Fig. 1) the third formula of hyperbolic geometry (1.1)
applied to the triangle 00,4, gives

Figure 1

(2.2)  sinh u cos ¢ = cosh p sinh v, + sinh p cosh v, cos (6; — ay).

In the rectangular triangle OAA, the second formula (1.1) gives sinh y =
sinh v/cos ¢ and in consequence (2.2) may be written as

2.3) *  sinh v = cosh p sinh v, + sinh p cosh v, cos (8, — a)).
Analogously
(2.4) sinh v, = cosh p sinh v — sinh p cosh v cos (8 — a).

In order to pass from (2.3) to (2.4) we changed the sign of the second term of
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the right side because in the quadrilateral 00,4,4 the internal angle A00,
has value 8 — «, while angle 00,4, = » ~ (8, — a,).
From (2.3) and (2.4) an easy calculation gives

(2 5) a(”d) - cmh’ LA sin (0| - a.)
) ., &) cosh’ v sin (6 — a) '
The third formula (1.1) applied to the triangle OAA, gives sinh u sin ¢ =

cosh v sinh A and in the triangle 00,4, we also have ginh u/sin (8, — «,) = sinh
p/8in ¢. These two equalities give

cosh v sinh A = sinh p sin (4, — a,),
and by analogy "
cosh v, sinh A = ginh p sin (6 — a).
From these last equalities we deduce
cosh v 8in (§ — a) = cosh v, 8in (6, — a,),

and if we take into account this equality, the Jacobian (2.3) has the value cosh
v,/cosh v and consequently

cosh v dv d@ = cosh v, dv, db, ,

that is, the density (2.1) and also the-measure of any set of geodesics are inde-
pendent of the point O and the direction origin of the angles 6.

3. Measure of the geodesics which cut a line. In the preceding section we
determined the geodesic G by its cosrdinates v, 8. If @ cuts a fixed curve C in
a point P, it can also be determined by the abscissa s of the point P upon C,
that is, by the length of the arc of C between P and an origin of arcs and the
angle ¢ formed at the point P by the curve C and the geodesic G. We shall
express the density (2.1) as a function of s, ¢.

Since through any point there is only one geodesic perpendicular to another
geodesic, G is also determined by s, 6. We shall pass first from v, 6 to s, 6 and
afterwards to 8, . In the system of curvilinear codrdinates whose curves v =
const. are the geodesics normal to 04 (the letters desxgnst.e the same points as
in §2) and the curves u = const. are their orthogonal trajectories, we have [2; 335)

@3.1) ds’ = du® + cosh’u dv’.

Consequently, if the geodesic G (v = const.) forms an angle ¢ with the curve C,
we have

gin ¢ = coshdsu dy
from which
dy = SBE g

cosh u
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Therefore (2.1) may be written as

- 8in ¢
3.2 dG = coshv osh u ds do.
In place of # we wish now to introduce the angle ¢. Let us call p the arc of
geodesic OP, a the angle which this arc OP makes with the direction origin of
angles at O, and «, the angle which OP makes with the curve C (Fig. 2). In

Fiaure 2

the rectangular triangle OAP we have angle AOP = § — a, angle APO = a, - ¢,
and from (1.1) we deduce

cot (a; — ¢) = cosh p tan (8 — a),
from which, by differentiation, we get

de - cosh p do
“sin’ (@, — ¢) cos’ (6 — a)

(3.3)

But, in the same rectangular triangle OAP

cos (6 — a) = cosh u sin (a; — ¢), cosh p = cosh u cosh v

and as a consequence

. cosh psin’ (@, — ¢) _ cosh v
cos’ (6 — a) ~ cosh u’

Substituting in (3.3), we have

cosh u
3.4) do = osh o do,
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and the density (3.2), after the change of the variable 8 for the variable ¢, will
take the form

(3.5) dG = sin ¢ ds de.

This expression of the density for sets of geodesics which cut a fixed curve C
has the same form as for the density for straight lines of the plane [4; 13].

In order to get the measure of all the geodesics which cut a fixed curve C of
length 1, we must integrate (3.5) with respect to s from Q to L and with respect
to ¢ from 0 to «; the value of the integral is 2L. In this way, if the geodesic G
cuts the curve C in n points it will be counted n times. As a consequence we have

3.6) f n d@ = 2L,

G-Cro

the integration being extended over &ll the geodesics which cut the curve C.

We say that a closed curve C is conver when it cannot be cut by any geodesic
in more than two points. In this case, in (3.6), n = 2 always and we find that:
The measure of the geodesics cutling a convex curve 18 equal to the length of this curve.
This result and formula (3.6) have the same form for the plane [4; 11] and for
the sphere [4; 81].

From (3.5) may be obtained also an integral formula which can be considered
as the “dual” of (3.6). Multiplying both sides of (3.5) by the angle ¢ and in-
tegrating over all values of s and ¢ (0 < ¢ < x) we find that the integral of the
right side has the value

./;Ld8.£'¢sm¢d4p=wL

and in the left side for every position of G we must add the angles ¢, (0 < ¢; < 7)
which G makes with C at the n intersections. Hence, we have

j 2 ¢; dG = =L,
1
the integration being extended over all the geodesics which cut C.

4. Density by pairs of points and integral formula for chords. The density
to measure sets of points is equal to the element of area; we shall represent it by
dP. Let us consider a pair of points P, , P, . In order to measure sets of pairs
of points we shall take for density the product of both densities, that is, dP,dP, .
Through P, and P; only one geodesic G may pass. Once this geodesic is fixed,
the points P, , P, are determined by their abscissa u, , 4, measured upon G from
an arbitrary origin. We wish to express the product dP,dP, by means of dG
and du, , du, .

In a system of polar geodesic coérdinates the element of arc is expressed
[2; 335] by ,
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(4.1) ds’ = dr’ + sinh’® r dy’

and thus the element of area is sinh r dr dp. When P, is fixed, the differential
of the area dP, expressed in the system of polar geodesic codrdinates of origin
P, is

(4.2) | dP,; = sinh r dr de,

r being the length of the arc of geodesic G which joins P, and P, , that is, r =
| uy — u;|. From any fixed point O we trace the geodesic normal to G and as
in §2 and §3 we call A the foot of this perpendicular.

As before, we call v the arc OA and @ the angle made by 04 with a fixed
direction traced by 0. P, is supposed to be fixed. In the expression (4.2) we
may introduce the angle 8 in the place of the angle ¢ because the relation between
them is the same (3.4) already found in what precedes. Then we have

cosh v
cosh u

4.3) dP; = sinh r d de.

In the system of rectangular geodesic codrdinates in which the curves v =
const. are the normal geodesics to 04 and the curves u = const. are their orthog-
onal trajectories, the differential ds has the form (3.1) and the differential of
the area for the point P, is

4.4) dP, = cosh u, du. dv, .

Taking into account (2.1) and substituting for symmetry du, instead of dr,
from (4.3) and (4.4) we deduce

(4.5) dP, dP, = sinh r du, du, dG,

G being the geodesic which joins P, and P, and r = | u; — u, | being the length
of the arc P,P, . This differential formula (4.5) permits us to generalize to
Crofton’s formula for chords surfaces of constant negative curvature. Let C
be a convex curve of area F; P, , P, two interior points to C; and G the geodesic
which joins them. We desire to integrate (4.5) over all pairs of points contained
in C. The integral of the left side is evidently F*. To calculate the integral of
the right side we observe that, if ¢ represents the length of the arc of the geodesic
@ which is interior to C, we have

f f'sinhlu.—u,ldu,du,=2(sinh¢—cr)
o 0

and consequently

(4.6) f @sinh ¢ — 0) dG = }F".

@Cwn0

This formula (4.6) is the generalization of Crofton’s formula for chords.
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If K is —1/R? instead of —1, we have

[ (- E-3(2)

a-Cwmo

Multiplying both sides by R* and letting R — «, we find

(4.8) [ #da =3,

G+ Cm0

dG being the density for straight lines on the plane and ¢ the length of the
chord which the straight line G determines in the figure plane convex C of area
F. This formula (4.8) is Crofton’s integral for chords in plane geometry [4; 20],
[7; 84].

5. Density for pairs of geodesics which intersect. If two geodesics G, and
G, cut cach other at a point P and if v; and 6, are the codrdinates of G, (¢ = 1, 2)
with respect to the origin O (§2) in accordance with (2.1) we have dG; = cosh
v.dv,d8, . To measure a set of pairs of geodesics, we take the integral of the
expression

(5.1) d(;l(“?z== COSh v|c08h vglh“ dolthh d02-

The geodesics G, , G; may also be determined by their point of intersection P
and the angles ¢, , ¢, Which they respectively make with a fixed direction at P.
The angle ¢ = | ¢; — ¢ | is that formed by G, and G, . If we take into account
(3.1) when the geodesic v, , 8, becomes the geodesic v, + dv, , 6, , the arc u, =
const. described by the point P has the length cosh %, dv, . On the other hand,
if ds, is the arc described upon G, by the intersection of G, and G, , the same are
is also equivalent to sin ¢ ds, . Consequently,

(5.2) cosh u, dv, = sin ¢ ds, ,
and by analogy
(5.3) cosh u, dv, = sin ¢ ds, .

Also, if we suppose P fixed, the relation between the angles 8; and ¢, is given
by (3.4), that is,

(5.4) cosh v, d9, = cosh u, de: .

From these equalities and from (5.1) we deduce dG,dG, = sin’e ds,ds,de,dg; .
But sin ¢ ds, ds, is equal to the element of the area dP and consequently

(5.5) dG, d@, = sin ¢ dy, de, dP.

This formula which expresses the product of the densities of two intersecting
geodesics as a function of the density of their intersection point P and the
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densities of the angles ¢, , ¢, at P has the same form as on the plane [4; 17] and
on the sphere [4; 78].

In the cases of the plane and the sphere, as two geodesics always cut each
other (the exception of straight parallel lines in the plane has no importance),
integrating both sides of the formula (5.5) over all the pairs of geodesies which
cut a convex curve C, we arrive at Crofton’s fundamental formula [4; 18], [7; 78],
[11). For surfaces of constant negative curvature this reasoning cannot be
applied because we may find sets of pairs of geodesics of finite measure which
cut C without intersecting each other in any point P. Nevertheless formula
(5.5) is of use in obtaining the following integral formula. Let us integrate the
two sides of (5.5) over all the pairs of geodesics which intersect each other in the
interior of a convex curve C of area F. The integral of the right side is

(5.6) fdpfo'fo'sin|¢l—¢,1d¢.d¢,=w.

P<cC

To calculate the integral of the left side we first fix G, . If we call o, the length
of the arc of G, which is inside C, in accordance with (3.6) the integral of dG,
extended over all the G, which cut o, has value 2¢, . Thus the integral of the
left side of (5.5) is equivalent to 2 f° ¢,dG, . Equating to (5.6)-and writing ¢
and G in place of ¢, and G, , we get the integral formula

.7) f ¢ dG = «F.

G Cro

From this formula and from (4.6) we deduce

(5.8) [ sinh o dG = = + 3P

G-Cruo

In (5.8) and (5.7) as in (4.6) ¢ is the length of the arc of the geodesic G which
is inside C.

6. Cinematic measure. Hitherto we have only considered sets of points and
geodesics. Now we wish to consider sets of elements each of which is formed
by a point P and a direction ¢ at P. To measure a set of such elements we take
the integral of the differential form

(6.1) dC = dP de,

which is called cinematic density. For its definition on the plane and on the
sphere, see [4; 20, 81].

On the surfaces of constant negative curvature two figures are called “con-
gruent”’ if they can be superposed by a motion of the surface into itself [2; 333],
[6; 409]. The position of a figure C is determined by fixing an element P, ¢
invariably bound to C. Consequently, the cinematic density serves also to
measure any set of congruent figures.
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Let C, be a fixed curve of length L, and C a mobile curve of length L. Suppose
that both curves are formed by a finite number of arcs of continuous geodesic
curvature. Calling n the number of intersection points of C and C, , a number
which depends on the position of C, we wish to calculate

©.2) I= f n dC,

C*Cemo0

where dC is the cinematic density (6.1) referred to the mobile curve C, and the
integration is extended over all the positions of C.

We shall require a preliminary formula. Let C, be a fixed curve. For a
point A of C, consider the geodesic which makes with C, an angle 6 and upon
this geodesic take an arc AA’ = r. If the point A describes upon C, an arc
AR = ds, , 8 and r remaining constant, the end A’ will describe A’B’ = ds} .
Let ¢’ be the angle made by AA’ with A’B’. The elements ds, and ds) may be
considered to be in first approximation ares of geodesics and accordingly we
can apply formulas (1.1) of hyperbolic trigonometry. Considering only a first
approximation, we have cosh AB = cosh A’B’ = 1, sinh AB = ds,,sinh A’B’ =
ds) . Thus the first formula (1.1) applied to the triangle AB’A’ gives

cosh AB’ = cosh r + sinh r cos ¢’ ds} ,
and applied to the triangle ABB’,
cosh AB’ = cosh r + sinh r cos 8 ds, .
From these equalities it follows that
(6.3) cos @' dsg = cos 0 ds, .

This is the preliminary formula sought and it is verified whether the arcs of
geodesic AA’, BB’ intersect or not.

We return now to the calculation of the integral (6.2). Let C, C, intersect in
point A at angle « (Fig. 3). We fix at C and C, an origin of arcs, 8 being the

0.

N~ C
PI“‘\

Fioure 3
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curvilinear abscissa of A upon C and s, the abscissa of A upon C, . In order
to determine the position of C, in place of P, ¢ which figures in (6.1), one may
substitute s, 8 , a. We wish to express the cinematic density (6.1) with these
new variables 8, 8, , a. For this we must observe the following.

Let P be the point invariably bound to C which figures in (6.1), PA the
geodesic arc which unites P with the intersection point A, and 6 the angle which
PA makes with the fixed curve C, . If s and « are fixed and s, passes from s, to
8, + ds, , the angle # will not vary and P will describe an element of arc ds;
with value, according to (6.3),

6.4) dsy = <22 g, ,
cos ¢’

where 6’ is the angle formed by the prolongation of AP with the direction of
ds} . Also, s and g, being fixed, when a passes to a + da, the point P describes
an arc ds’ normal to AP with value

(6.5) ' ds)’ = sinh r da,

r being the length of the arc of geodesic PA. This value (6.5) is obtained from
the expression of the element of the arc in polar geodesic codrdinates (4.1). The
angle formed by the elements ds; and ds{’ is 3» — 6’ and as a consequence the
element of area dP expressed by the cotrdinates 8, , a has the value dP =
sin (3= — @') dsj ds{’, that is, according to (6.5) and (6.4),

(6.6) dP = cos 8 sinh r ds, da.

We shall suppose now that, having fixed P, we make P4 rotate, and with it
all the curve C, through an angle dp. The point A will describe an arc A4, of
a geodesic circle of center P, where AA, = sinh r de. After turning through
the angle de the curve C will cut C, at the point B and the arc A,B is the arc ds
which has increased in passing from ¢ to ¢ + de. The infinitesimal triangle
AA,B may be considered a geodesic triangle and accordingly the second formula
(1.1) gives

ds_ _ sinh r dp
cos 8 sin (a + da)’
that is,
6 dp = —SDZ_
From (8.7), (6.6) and (6.1) we deduce
(6.8) dC = sin « ds ds, da.

This is the expression sought. The angle a will always be considered between
0 and .
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This expression (6.8) of the cinematic density has the same form as that for
the plane [4; 23] and permits the immediate calculation of (6.2). Integrating
(6.8) over all the values of s, 8 , a, we shall have the integral of dC extended
over all the positions in which C cuts C, , but if in some position C and C, inter-
sect in n points, this position will have been counted n times. Consequently,

1= ndC--/;Ldaj;b.daoj:sinlalda=4LLo,

CeCem0

that is,

6.9) f ndC = 4LL, .

C+Coem0

This formula expresses the generalization to the surfaces of constant negative
curvature of Poincaré’s formula and it has the same form as in the case of the
plane [4; 24] and the sphere [4; 81].

The expression (6.8) also permits us to obtain an integral formula which, in
a certain form, is the dual formula of (6.9). If we multiply both sides of (6.8)

by « and integrate over all the values of 8, 8, , @ (0 < a < ), the sum J_ a, of
1

the angles at which the curves C and C, intersect will appear on the left side
and the integral of the right side will have the value

| ./;Lda./;b.d‘o./::lasmaldaskLio.
Consequently,

(6.10) / ia.- dC = 2rLL, .

C+Com0

It should be noted that this formula also has the same form as in the case of
the plane [9; 101] and of the sphere [4; 82].

7. Fundamental formula of cinematic measure. On the surface of constant
negative curvature K = —1, let us consider a closed curve C, of length L,
without double points and formed by a finite number of arcs of continuous
geodesic curvature. Let F, be the area bounded by C, . The total geodesic
curvature K, of C, is composed of the sum of the integrals /", ds, of the geodesic
curvature along the arcs which form C, plus the sum of the exterior angles at
the angular points if these appear. Then the Gauss-Bonnet formula gives

(71) Ki=2r+F,.

If C, is another closed curve of area F, with length L, and total geodesic curva-
ture K, , then K, = 2xr + F, also. Suppose C, fixed and C, of variable position.
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In each position of C, the intersection of the domains bounded by C, and C,
will be composed of a certain number of partial domains whose boundaries are
formed by arcs of C, and C, . We represent by F,, the area, by L,, the length
and by K,, the total geodesic curvature of the domain C,, intersection of the
domains bounded by C, and C, . C,, may be multiply connected (Fig. 4).

Figure 4

We wish to demonstrate the integral formula

7.2 [ KodC, = 2e(®F, + K.Fo + LiL),

Ce*Cim0

where dC, is the cinematic density (6.1) with reference to the mobile figure C, ,
the integration being extended over all the positions of C, in which the domain
bounded by this curve has any common point with that bounded by C, .

Formula (7.2) is the generalization on the surfaces of curvature K = —1
(that is, the generalization to hyperbolic geometry) of Blaschke’s fundamental
formula of integral plane geometry. The proof we shall give is analogous to
that given for the plane by Maak [9] and Blaschke [4; 37].

Calling s, , 8, the lengths of the arcs of C, and C, which contribute to form
the boundary of C,, and «; the angles in which C, and C, intersect, by definition
of K,, we have

@)  Ku=X[ ddu+Z [ ddn+Ta,

«2 and ) being the geodesic curvatures of C, and C, . Let us consider the
integral I, = /" «} ds, dC, extended over all the positions in which the point
8 belongs to the boundary of C, and is contained in the interior of C, . This
integral I, may be calculated in two ways. Having first fixed the point 8, , we
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must integrate dC, over all the positions of C, for which this fixed point is
interior to C, ; according to (6.1) this integral has the value 2«F, ; there

f "‘: ds,

of value K, remains. Consequently, I, = 2¢F,K,. The same integral may be
calculated in another way. If we first fix C, , the integral S «{ ds, extended
over all the values of s, which are interior to C, is the sum

5,

which appears in (7.3). We must now integrate the product of this sum by
dC, . Equating this value of I, to that found before, we have

f Zf Ke dao dCl = 2’F]Ko,

Co* C190

and analogously, for symmetry, must be

[ T ddndo =2k,

Ce*Cy¥0

Taking into account these values and (6.10), we have formula (7.2), which we
wished to prove.

Formula (7.2) may be written in a more convenient form. For this we must
calculate the integral /° F,, dC, in which F,, is the area of the intersection of C,
and C, and the integration is extended over all the positions for which C;, =
C,o-C, # 0. Let us consider the integral I,, = S dP,dC, , in which dP, is the
element of area, extended over all the positions in which C, contains the point
P, interior to C, . Having fixed P, , we find that the integral of dC, has a value
2xF, and when P, is varied over all the interior of C, we obtain I,, = 2xF,F, .
Also if we fix C, first, the point P, can vary over all the points of the inter-
section of C;, and C, . The integral of dP, will then be F,, and consequently
Iy = S Fo, dC, . Equating the two values obtained for I,, , we have

74 [ Fudc, = 2o, .

Co*Ciw0

By the Gauss-Bonnet theorem, if the intersection of C, and C, is composed
of v simply connected pieces (for example, in Fig. 4, » = 2), we have Ko, = 2xv +
Fo, and moreover K, = 2x + F, , K, = 2x + F, . Substituting these values
in (7.2) and taking into account (7.4), we find

) [ vdC. = 20(Fs + F) + FoF, + Ll .

Ce*C1¥0
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In particular, if C, and C, are convex, their intersection is always simply
connected, that is, composed of only one piece. As a consequence » = 1 and
we have the result:

The measure of the positions of a convex figure C, tn which it has some common
point with another convex figure Cy has the value

(7.6) [ de. = 22Fs + F) + FoF, + Ll .

Ce*C'¥O

In the following sections we shall apply this formula and (6.9).

8. Isoperimetric propriety of geodesic circles. On the surface of constant
negative curvature K = —1, let us consider a closed curve C which has no double
points, and which has length L and area F. We consider the set of curves con-
gruent to C which have points in common with C. Calling M, the cinematic
measure of the set of these curves which have ¢ points in common with C, we
can write formula (7 6) as »

8.1) M.+ M.+ M, o= eF + F+ L,
since now C, = C, = C. Anal(;éoﬁsiy, formula (6.9) gives
(8.2) 2M, + 4M, + 6M, + -+ = 4L
From these two equalities we deduce .. ... =
(8.3) r-r 1}'4 rF M. + 2M. ¥ M, + -

and, as the M, , whnch are the measure of certain sets, are always non-negative,
we have

(8.4) . L' — F* — 4xF > 0.

This is the isoperimetric inequality on surfaces of constant negative curvature
K = —1. In fact, from (8.4) can be deduced that for all the curves which limit
an area F the minimum value of the length is (F* + 4xF)!. This minimum
value L, is reached by the geodesic circles. Hence if C, is a geodesic circle of
radius p, we have [6; 404]

(8.5) Lo = 2r Sinh Po Fo = 2"’(coﬁh Po — 1)

and therefore L; = F3 + 4xF, .

This propf of the isoperimetric inequality (8.4) does not permit the assertion
that the geodesic circles are the only figures for which the equality in (8.4) is
valid. For this we shall give another proof leading to an inequality stronger
than (8.4).

Let po have such a value that no geodesie circle of radius p, is contained in
the interior of C nor contains C in its own interior. Also let C, be the geodesic
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circle of radius p, . Calling M, the measure of the set of circles C, which intersect
C in 1 points, in accordance with (7.6) and (6.9) we have

(8.6) M4+ M+ M+ - =22(F+ F,) + FF, + LL,,
and
(8.7) 2Mg + 4M4 + 6M°+ R 4LLO.

From these equalities we deduce
(88) LLy— FFo—2x(F+ Fo) = M, + 2M, + 3M, + --- > 0.

To abbreviate, we put

8.9 A= L'— F* — 4xF,
where A is the “isoperimetric deficit”. F, and L, given by (8.5) thus satisfy
(8.10) Ly — F§ — 4xF, = 0,

with which we easily prove the identity
(8.11) L [AF; — (LF, — FL,)") = LL, — FF, — 2x(F + F,).
2FF,
Taking into account (8.8), we deduce from (8.11) that
A2 45 (L, — FLY,
0

or by substituting for F, , L, their values (8.5), we get
(8.12) A 2> (L - F coth 4p,)’.

This inequality is' verified for any p, so that no circle of radius p, could contain
C or itself be contained in C. In particular, if p, is the minimum radius of the

geodesic circles which enclose C and p, the maximum of those contained in the
interior of C, we have

(8.13) A 2 (L — Fcoth §p,)?, A > (F coth §p, — L)?,

and taking into account the inequality ' |

(8.14) @+ 2 =+ )

from (8.13) we deduce

(8.15) A > }F’(coth #p;, — coth #p,)".
Analogously, taking into account (8.10), we easily prove the identity

w LL, — FFy — 2x(F + F,),

(8.16)




702 L. A. BANTALO
and consequently, in accordance with (8.8), we have
®.17) A2 7 (Ur + )Fo = LLJ.

If we substitute the values (8.5), we may write this inequality
(8.18) A > ((4x + F) tanh 3p, — L)

Writing this inequality for p, and p, and taking into account (8.14), we deduce
(8.19) A > 1(4x + F)*(tanh §p, — tanh $p.)".

The isoperimetric inequalities (8.15) and (8.19) are stronger than (8.4).
They make clear that the equality A = 0 can be verified only when p; = p, ,
that is, when C is a geodesic circle. It is thus completely proved that on surfaces
of constant negative curvature the geodesic circles are the only curves which
for a specified length enclose maximum area. A direct proof of the inequalities
(8.15) and (8.19) was given by us in [12]. The isoperimetric problem on the
surfaces of constant negative curvature has also been solved in a completely
distinet manner in [13).

For a surface of constant curvature K = —1/R? the inequalities (8.15) and
(8.19) are written respectively

(B - () - oz oy - hen )
0 -8 - o o+ Yo - i)

Multiplying by R* and making R — =, we obtain

2
(8.20) L* — 4xF > F’(l - l)
Pi Pe
and
(8.21) L’ — 4xF > x'(p, — )",

which are isoperimetric inequalities for plane figures. In these, p; is the maxi-
mum radius of those circles which are contained in C and p, the minimum of
these which contain C. Inequality (8.21) is a classic inequality due to Bonnesen
(5; 63].

9. A sufficient condition that a convex curve congruent to C be contained in
the interiog of another convex curve C, . Let C, be a convex curve of length
L, which limits a domain of area F, . C, is another convex curve of length L, and
area F; . We wish to find a sufficient condition that a curve congruent to C, be
contained in the interior of C,. Asin §8, let M, be the measure of the set of curves
congruent to C, which intersect C, in ¢ points. M, is the measure of the set of
curves congruent to C, which are in the interior of C, or which contain C, .
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According to (7.6) and (6.9) we have

(9.1) M0+M2+M4+Me+ e =21(F0+F1)+FOF1+LOL1
and
(9.2) 2M, 4+ M, + 6My + -+ = 4L,L, .

From these equalities
(9-3) 2T(F0+F|)+FQF|—L0L| =.M0-—M4—2M6—-..'

If M, = 0, the left side of this equality is non-positive. Hence a sufficient
condition that a curve congruent to C, contain C, or be contained in C, is

(9.4) 2x(Fy + F\) + FoF, — L,L, > 0.
In order to sharpen this result, we first observe that by (8.4) for any C, and C,
Ly> Fi+ 4xF,, Li>F + 4F,
and hence
(9.5) LoL} > FoF (47 + Fo)(4x + F,).
Consider the inequality
(96)  LoLi — Fi(4x + Fo) > [LoLi — FoFi(4x + Fo) (4= + F))]Y,

whose right side is always real by (9.5). If we square and simplify (9.6), we
see that (9.4) is also verified. Consequently, one of the two curves C, or C,
can be contained in the interior of the other. We shall prove that if (9.6) is
verified, F, < F, and consequently C, can be contained in C, . In fact, if F, >
F, , in accordance with (9.4), which is a consequence of (9.6), we have L,L; <
4xF, + F,F, and the inequality (9.6) is not verified since the left side must be
positive. Consequently,

C, and C, being two convexr curves on the surface of curvature K = —1, the
inequality (9.6) 18 a sufficient (but not necessary) condition that a curve congruent
to C, be contained in the interior of C,, .

In particular, if C, is a geodesic circle of radius p, , taking into account the
values (8.5), we can write the inequality (9.6) as

9.7) L, — (4 + F,) tanh §p, > (L; — F,(4x + Fo))}

and this inequality is a sufficient condition that C, contain in its interior a
geodesic circle of radius p, .
Analogously,

(9.8) L, — F, coth 3p, > (L — F,(4x + F,))}

is a sufficient condition that C, be contained in the interior of a geodesic circle
of radius p, . ‘
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If the curvature of the surface is K = —1/R?, the corresponding condition
(9.6) can be written without difficulty. Multiplying both sides by R? and
making R — o, we obtain

9.9) LoL, — 4xF, > (LiL} — 16x°F,F))},

which is a sufficient condition that a plane convex curve congruent to C, of
area F, and length L, be contained in the interior of C, whose area and length
are F, and L, respectively.

Condition (9.9) for the plane has been obtained by H. Hadwiger [8]. For
the analogous condition for the curves on the sphere see [10].
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