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1. Introduction. In previous papers [4]," [S], [6] we have studied the following
generalization of Einstein’s unified theory of 1950. The space-time is assumed to
be a four dimensional differentiable manifold endowed with a non-symmetric affine
connection I'j, and a non-symmetric covariant tensor g;;. The most general covariant
tensor T;;, which depends only on the connection I’} and its first partial derivatives
and it is at most of second degree as function of T}, is the tensor (2.13) where a, Breeey
v are arbitrary constants. Then we form the density T;,g*|g|'/* and deduce the field
equations from the corresponding variational principle. The field equations depend
on the set of constants a, 8, ..., v. The classical Einstein's theory corresponds to

=1, f=y=-...=y=0. Particular cases have been considered by M. A. Ton-
nelat ([7], Note I) and ([8], p. 351-363) where related works of Nguyen Phong Chau
(1963), J. Lévy (1959) and L. Bouche (1961) are mentioned. In [6] we have analyzed
the conditions of the constants a, 8, ..., v for the field equations to be invariant by
A-transformations or for T, to be a pseudo-hermitian tensor. In the present paper
we shall give some complements of the general theory and, in particular, we establish
the conservation laws or conservation identities which are satisfied for any set of vari-
ables (I'},, g;) which satisfies the field equations.

Though we use small changes in the notations, the main references for the
concepts and formulas in the sequel are the books of A. Lichnerowicz [3) and
M. A. Tonnelat (7], [8].

2. Notations and fleld equations. Let I'j, be an affine connection and let
2.1 L=+ %), Sh=¥Th—Thy)

be its symmetric and skewsymmetric parts (4% is a connection and S‘,. is the
tensor of torsion). Following Einstein we set

2.2 Si=Sh -

Let g;; be a non-symmetric tensor. 1If g denotes the determinant of g,;, assumed
# 0, we introduce the densities

(2.3)  ®y=g40"" Du=4By;+8y), Fag=HGy;— 8.
For any tensor or density of second rank, Einstein [1] introduced the mixed
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covariant derivative, obtained when one differentiates the first index with respect to
I}, and the second index with respect to '}, = I';, We will denote this mixed
covariant derivative by a vertical bar. For instance we put

@4 @, = 6", + rL@™ + g™ - 46",

where a comma denotes ordinary partial derivative. Denoting by a semi-colon the
ordinary covariant derivative with respect to the connection I'f;, we have

2.9 G*, = @, + 258,06 —S,6".

Notice that for symmetric densities $* = $* we have

2. 6) % = M + 250.9" + 2509
and for skewsymmetric densities §* = —g§*/,

2.7 8““ = _'8“ll + 25‘0-8‘- + ZS:,%"' .

In particular, we have

2.8 %1 = o + 25,0

@.9) Fh= =8 + 2508 + 25,3

Notice also the formulas

(2. 10) ="+ g™ - sat,

(2. 11) M= QM ¢ + Maid™ — Sip™ .

Though in general we shall use densities instead of tensors, we state the follow-
ing formula: '

2. 12) &% = 19" + 9%01""), s — ™19V 4,

which holds good for any covariant derivative. By meaans of (2.12) the field equa-
tions in the sequel may be expressed in terms of the tensor g,,.
The most general covariant tensor T;,, which depends only on the connection
I"}‘. and its first partial derivatives and it is at most of second degree as functions of
T is

2. 13) T = aRiy + f(dims — dTn.0) + Stk + 351,57,
+ eSia + BSai + pSaSr + vSS)
where R;, is the Ricci tensor
(2. 14) Ry=T3a—ap+ Tjul — e .

For a proof, see [6].
The variational principle

@.15) 3 S T @ dr =0
(where dr = dx, A dx, A dx, A dx,) gives rise to the field equations

(2. 16) f° =0, Tu=0
(sen [6]. where eauations (19) are clearly misprinted), where
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2 17) 82 = a(—@", + B"S, + (@" + BS)3}) — BE", 3¢ + §* .50
+ 7(—=8"1, + FSWE! + FUS,) + H(QYS, — ST,
+ o —H®Y,, + BAILNE + §B",, + BT — BUS,)
+ HH—@", — B8 + HBY,, + G*IS,)88 — @'9S,)
+ p(ABPSUO — 1FPSHSL + FUS,) + UPTSSE — 97880 .

By means of (2.12) it is easy to express these equations in terms of the tensor
g* instead of the density ®*. For instance, for the classical case a =1, =7 =
cee=v =0, we get

@, — B"S, — @) + B"S)3; = |g]" (" — (T% — 19"
+ 20"St — 80" — (Tl — 1)g™) = 0,
where y; == (|g|'/*),;, in accordance with Lichnerowicz (3].

The expression (2.17) takes a simple form if the constants a,8,7,...,v are
such that

(2.18) a#0, a+7r#0, 6=0, p+ua+@+¢r=0,

a set of conditions which we will assume satisfied from now on.
In this case it is useful to introduce the new connection

(2. 19) LY, =T, + 42 — (s + 9)/a)31S, — (¢ + $)/a)3iS; ,
which is such that
(2. 20 L= §(Lj,— L) =0.
Then the first equations (2.16) split into (sce [6])
@221 * = —a®" (L) — 18" 1HL) + §(r + 28)3:8"
+4(—2a+ 28— )IF =0,
(2.22) R = §e—¢— wFL) + (2a—SB+ 7+ §0F" . + §6 + 99" (L)
—{(e+ @)2a — ¢ — $)Ja + 8 + 3»}&0" =0,

where the mixed covariant derivatives refer to the connection Lf,.
From (2.21) having (2.8) and (2.9) into account, we deduce

2. 23) Qf — Of = 2a + )(F (L) — Lia™ — %0 =0.

Hence, according to (2.10) and (2.20), the equations Qf' — Q}‘ =0 are identic-
ally satisfied and that justifies the addition of (2.22) as field equations. On the
other side (2.21) gives

2.24) QF + 0 m —2a + NLIF"™ — 229" (L) + P(26 ~ )Y =0.
Hence, from (2.23) and (2.24), assuming a + y + 0, we have

(2. 25) L) = LILF™ + 3%,

2. 26) a®™(L) = §2B ~ )B" s — (@ + NLIF™ .

Substituting (2.25) and (2.26) into (2.22) and having (2.18) into account, we get
the interesting relation
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.21 AF* + BSQ" =0,
where
(2. 28) A=2a— 55+ 58 +P)la—ec—4¢+7,
(2. 29) B=—(¢+¢)2a —e—@)Ja—3~3v.
Notice that by means of the connection L§, the tensor T, writes
(2. 30) T = Ta(L) + §4(Sia — Sy 0) — §BSS,
and the second set of field equations (2.16) writes
(2. 31) TiM(L) + 3A(S;.p — Sa,i) — §BS; S, =0

The field equations are (2.21), (2.22) and (2.31) from which the relations (2.25),
(2.26) and (2.27) follow. The unknowns are Li,, ™, S;. The components I'}, are
then given by (2.19) from which the relation I'}, — I'y; = 2S; follows.

3. Particular cases of the fleld equations. Taking account of (2.27) we see that
there are two important particular cases to be considered:

a) B=0, A 0. Then (2.27) gives

a.n 3".‘=o,
and equations (2.21) give
3.2 a®® (L) + 1§ (L) =0.

Equations (2.31), if B =0, may be written as
3.3 T =0,  Tuag L) + TupdD) + Taal) =0,

where () denotes the symmetric part and [ ] the skewsymmetric part of the tensor
Tu(L). The field equations are (3.1), (3.2) and (3.3). When y =0, this system
reduces to the so called ‘‘weak system™ of Einstein. Thus, we have proved that
any tensor Ty, (2.13) such that the constants a, 8,7, ..., v satisfy the conditions
(2.18) and B=0, y =0 (B given by (2.29)) gives rise to the field equations of the
weak system of Einstein.

b) A=0, B#0. Assuming that the determinant [[*'|| # O, (2.27) gives

(3-4) S‘=0.

Then, according to (2.19) we have L, = I'{,. Having into account (2.18), (2.29),
(2.26) and (3.4), it follows that equations (2.22) are ideatically satisfied, so that
the field equations reduce to (2.21), (2.31) and (3.4) which may be written as

a®%, + 78% 1. — Y7 + 28)3:F" ¢ — Y(—2a + 28 — PIF* (=0,
S‘ = 0 » T‘. = 0 .

The more simple case corresponds to y =0, 8 =0. Then the system (3.5) takes
the simple form

(3.6) &, = —-$5:8%:, Si=0, T,=0,

where

3.9)
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To = aRiy + 2a — 49)Si.\ + ¢Sh;; — 265,50 + vS:S, .

These field equations are valid for any set of constants a # 0,¢,v. We have
applied that in the present case we have ¢ = 2a — 4¢, u= —2¢. For instance, the
particular tensors 'R, 'R, considered by Tonnelat ([7), pp. 129-130) belong to this
class. Indeed, 'R;, corresponds to a=1, ¢ =%, v=0 and ’R;, corresponds to
a=1,¢=4v= —3.

The tensor *R;, of Tonnelat ([7], pp. 129-130) corresponds to a =1, § =3},
7=0,38=0,¢s=%, =4 p=—% v=—4 and hence £ =0, B=0. Equations
(2.27) are identically satisfied and the field equations reduce to (2.21) and (2.31)
which in this case may be written as

3.7 —@" (L) + 383" — 3853 =0, 'R(L)=0.
c) As a last example we consider the Einstein tensor (see [1))
(3.8 Ep= —3a0ur+ ad) + Tihm + Tiadiw — ToiT o

which corresponds to

3.9 a=1, =3, ¢=1, y=0=¢=p=v=0.
We have A =1, B= —1. The connection (2.19) writes
(3. 10) Ly, = I}, + 431S, — 43:5. ,
and the field equations (2.21) write
3. 11) ~ @ (L) + 43,8 s — 367§ =0.
The field equations (2.22) are equivalent to (2.27), i.e.
(3. 12) Fi=59".

The field equations are thus (3.11), (3.12) and E,, =0. Adding the condition
S;=0 we get the ‘‘strong system’’ of Einstein &*, =0, S; =0, E, =0 which,
however, is not deducible from a variational principle.

4. Conservation laws. To get the identities of conservation we will follow a
similar approach to that of Lichnerowicz and Weyl for the case a =1, f=7=...
= v = 0 (se¢ Lichnerowicz {2]).

Let C be a domain of the space-time of boundary GC and let &' be a vector field
which vanishes on dC. Consider

(4. l) I= S @‘.Tu dl' = T dr ’
[ ¢

where T = Tug®(g]"" = g"Tu and dr = dx, A dx, A dx, A dx,.
The Lie derivative with respect to the field ¢ is

“.2) L= Lade={ weh.de.

By means of the Stokes’ theorem this integral transforms into an integral ex-
tended on 3C, which is zero since ¢' vanishes on 3C. Thus we have

4.3) LI=0.
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On the other side, recall that the Lie derivative of ['}. is a mixed tensor of
contravariant valence 1 and covariant valence 2, given by

(4' 4) Ll[';b = G‘.u + G-P;b,u - 5‘.-1'?:. + e'.lr:h + G',kF;-

(see Yano [9]). Thus, assuming that the vector field & and its first and second
derivatives vanish on 3C, we have, on 3C, LI'j, =0. According to the variational
principle from which the field equations are deduced, this condition implies that

S (LeTw)®* de = 0,
[

and (4.3) gives

@. 5) L = S TuL®*dr = 0.
[
As is well known (see Yano [9]) we have
(4. 6) L‘@“ - 5"@“.- + @“5-.- - @ﬂlei" _ @‘-el.- s
and hence

(4.7) TaL®™ = "To®" o + Tu®™" o — (TuG™ + T,
= [Ta@®"™ — (Ta@™ + T, G™)8')n — BTy
+ (Ta®™ + T,8"),.¢° .
Substituting this expression in (4.5), applying then the Stokes’ theorem and

having into account that the vector field ¢ is an arbitrary vector field which vanishes
on 9C (together with its first and second derivatives), we get

4.8) (Tu®™ + T,@™),n — 8Ty, =0.

Putting

4.9) BP = HTuG™ + T,8") — Pr@*T,,
(4.8) may be written as

(4. 10) B o+ $Ta®*, =0,

which is the first form of the four identities of conservation.

These identities refer to the connection I'§,. If we want to introduce the con-
nection Lf, (2.19) which gives rise to the field equations (2.21) and (2.22), notice
that substituting the expression (2.30) of T, into (4.9) we get

4. 11) B} = HTu(L) + $4(S..0 — Sb,0) — $BSS)B™ + HTuu(L) + §4(Sh.. — Si.0)

— §BS,5,)8"™ — J8I@Y(Ti(L) + $AS:,5 — Sy,0) — $BSS))
= $Tu(L)B™ + §ToL)B*™ — PPGYTAL) + $4(S.s ~ Si.)F™
— W00AS;,; — 85,087 — §BS.S, O™ + ABITHYS.S; .
Putting :
(4.12) RN = 4TA(L)B™ + §T0(L)B*™ — PPBYT (L) — §BS.S,O™ .

and having into account the value of %87, an easy calculation shows that (4.10)
may be written as
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4. 13) Ria +ITALBY,, + §8,,,(AF* ( + BSP™) — 445, .5, =0,

which is the second form of the identities of conservation.
Notice the relation

4. 14) RT =B/ — 14,4 — S\, )F™ + WIS, — 5, )3 — 07 BS,S,9Y .
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