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§1. Introduction. J. L. Synge [8])"’ has considered 4-dimensional spaces which element of
line has the form

(1.1) ds® =dxi + 2h(x)dx,dx; +g(x)dx; — dxi —dx}

where h and g are functions of x, only, which we assume of class C* and g always positive. For
2g=h? and h=exp x,, (1.1) reduces to the Godel’s classical line element ([5],[6)).

According to a result of Bampi-Zordan [2] (see also J. P. Wright [9]), if the metric (1.1)
satisfies the Einstein equations of General Relativity for a perfect fluid, then all possible solutions
for h and g give rise to spaces which are isometric to each other and therefore isometric to
Godel'’s space. However, the spaces with the metric (1.1) have some particular properties whose
relations with the Gédel's case may have some interest. Our purpose is to study the geodesic lines
of (1.1) and to compare with the work of S. Chandrasekhar and J. P. Wright on geodesics in
Godel's universe [3]. We will give, first, an isometric embedding of (1.1) in a pseudoeuclidean
space of 10 dimensions, from which some properties on closed time-like curves can be deduced.
Finally, we give an isometric embedding in a 10-dimensional pseudoeuclidean space of Godel's
space in cylindrical coordinates and deduce some consequences.

§2. Isometric embedding of the arc element of Gddel-Synge in a pseudoeuclidean space of
dimension 10. The line element (1.1) is isometrically embedded in the 10-dimensional pseudo-
cuclidean space

s 10
(2.1 ds?=Y dz? -y dz}
1 6
by the functions
z1=x,, ;=g cosx;, z;=.¢ sinx,,
22 z‘=\/ﬁ cos (x, +x3), 25=\/ﬁ| sin 3(x; +x,), Zg=Xy,  Z1=Xy,

3=yg ., zg=y2hcos }x,—x)),  z0=1y/2hsin }(x,—x,).

From this embedding it follows that the x,-curves are closed curves and, according to (1.1)
they are time-like curves (ds* >0). Thus, the Gidel-Synge spaces are covering spaces of a non
causal space.

" Received July 13, 1981.
1) Numbers in brackets refer to the references at the end of the paper.
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Using equations (3.1) of the next section, it follows that these x,-curves are geodesics only
if g’=0, a case of little interest. On isometric embeddings of relativisitic Riemann spaces in
pseudoeuclidean spaces, see J. Rosen [7).

§3. [Equations of geodesics. The equations of the geodesic curves of the Godel-Synge
space defined by the line element (1.1) are

Auy +hiuyu,+(hg' — gh' uu, =0,

G.1) Auy+ (hh' — g Yusug — h'uyu, =0,
li3=0 N
Ug+h'uuy + 49 uu, =0

with the relation

3.2 ] +2huuy+ g — -G =1,
where
3.3 A=h*—g, w=dx/ds, h'=dh/dx,, g =dgldx,.

From (3.1) it follows that the x,-curves, x;-curves and x,-curves are geodesics. If x, =const.
and A, g are assumed not constants, the geodesics are x, =a,s+ b,, xy=const., xy=a,5+b;, x, =
const.

Assume that x, is not constant, and therefore u,#0. From (3.1) we have

3.4 Gglty + Auyty + (hh’ — g Yudu =0
and therefore
3.5 w2+ Aul = B* =const .
From the third equation of (3.1) we deduce x,=Cs+c, and then, (3.2) and (3.5) give
(3.6 (4 +h,)l=1+B+C=4D?,

where we have introduced the constant D in order to follow the notation of Chandrasekhar-
Wright in (3]
From (3.6) and (3.5) we have

&N)) u, =D/ 2 —huy=D|\/ 2 — h{(B* - )/4}'"

and from (3.5) and the last equation of (3.1) we deduce

(3.8) Uy +h'(D]) 2 ){(B ~ 1)/ 4} + (39’ — hh'N B* — 1) 4 =0 .
With the change of variable

3.9 u,=Bsin 0,

we get

(3.10 6={(hh’'—g’/2)/4}B cos 6—h'D| /24 .

This equation suggests the study of the particular case

(3.11) 2g=h
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for which (3.10) reduces to

Bcos0—D dh
(3.12) do=——"—"_" "
Bsin h
and therefore
(3.13) D—Bcos 0=K/h,

where K is a new integration constant. From (3.9) it follows that

(3.14) u,=[B*—(D—-K/h?*1'?, f [B*—(D—K/h)?*] " 2dx,=s5—3,,

0o

from which we deduce the function x, = x,(s).
From (3.7), (3.11) and (3.13) we deduce

(3.15) u, =(1/\/ 2 )2K/h— D)

and using (3.14) we have

(3.16) X, =(1/\/‘2”)J (2K/h— DXB* —(D — K/h)})~ ' 2 dx,.
1]

Using (3.5) and since 4 =h*—g=H*/2, we have
(3.17) uy =/ 2 (D~ K/h)/h
and therefore

= [ (D—-K/h)

3.18 =./2 dx, .
( ) X2 \/ J.O h[BZ_(D_K/h)Z]IIZ X4

Finally, from the third equation of (3.1) and (3.14) we have

X4 dx,

3.19 =C .
319 * L [(B*—(D—-K/h?*)"?

Equations (3.16), (3.18), (3.19) and (3.14) are the explicit equations of the geoedesics of
the Godel-Synge space (1.1) in the case 2g =h?. Notice that the null geodesics correspond to the
case in which the constants B, C, D are related by the condition

(3.20) D*-2B*-2C*=0

with the relation D > B* which is a consequence of (3.6).
For the particular case of Gddel's universe (h=exp x,) these null geodesics have been
considered by Abdel Megied and M. Dautcourt [1].

§4. The geodesics of Gddel’s universe, We want to show that when h=exp x, (Godel’s
case) the preceding formulae coincide with those given by Chandrasekhar and Wright in [3].
Putting

@0 y=l/h=exp(—x,), dx,=-dyjy

and assuming that x, =0 corresponds to s=0, from (3.14) we have
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¥ dy
4.2 s=-— ,
@2 ’ J,ﬂ—xzyuszywz—oz)”

Since B> — D* <0 and —4K%B* <0 we have
DKy+ B?-D? DK+B’-D2]

43 s=+(D*-B? ‘”2[—arcsin ———  tarcsin
(4.3) s ( ) KBy XB

Introducing the parameter ¢ defined by

4.4) s—(D*—B%)""? arcsin {(DK+ B>~ D?)/KB}=(D*— B*)"'*(2a+n/2),

we get
4.5 cos 20= —(DKy+ B> — D*)/KBy ,
and therefore
46) - D?-B? _b-8 l+xanzza ‘
K(D + B cos 20) K l+atan‘e
where
“.7 a=(D-B)(D+B).
Applying (4.1) we have
4.8) x,=log lr%:::z—;. s=20/D*~B%'?,

where we have normalized by the condition that to ¢ =0 corresponds x, =0 (which implies that
K=D-B).
From (3.16) and (4.1) we deduce

49) dx, = ~v/ 2Kdy _ P,
(— K2y +2DKy + B* - D¥)'? J2

and therefore

(4.10) x;=—(D/\/2)s+/ 2 arc sin {(D—Ky)/B}—/ 2 arc sin {(D—K)/B}

and assuming that for 0 =0 we have x, =0, we get

@.11) x,=—{J2 D/(D*-B*'*}o+/ 2 arc tan {(1 —a tan? 0)/(2/ « tan @)} —n/\/ 2,

which can be written

4.12) x,=-{/2 D/(D*—B*)"*)6-2,/2 arctan (/ « tan o).

In order to calculate x, we have

(4.13) dx;=—/2 (D-KyXB*—(D—KyP) '*dy,
and therefore
4.14) x,=—(/ 2 /KXB*~(D—- Ky)*)'* +constant ,

or, by (3.14) x,= —(/ 2 /K)u, +const. and using (4.8) we get
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4.15) x3=—( 2 /K){(x—1) tan o/(1 +a tan® ¢)}(D*— B*)' +const .
Under the assumption that K= D — B, (4.15) can be written
(4.16) x;=(D*—B*)"'22,/2 B tan o/(1 +« tan’ ¢)+const .
Finally, for x,, according to (3.19) and (4.4) we have
4.17 x3=2C(D* — B*)~2g +const .
(4.8), (4.12), (4.16) and (4.17) are the equations of the geodesics in Godel’s space according to
Chandrasekhar-Wright [3).

§S. Godel’s universe in cylindrical coordinates. Godel ([S), [6]) has given a new form of his
line clement by transforming to a system of cylindrical coordinates r, ¢, ¢, z defined by the
following formulias of transformation:

exp x,=cosh r+sinh 2r cos ¢,

6.1 X3 xp X, =/ 2 sinh 2r sin ¢,
¢+(1// 2)(x, ~2)=2 arc tan (exp (—2r) tan (¢/2)),
X3 =2z,

The line element (1.1) becomes
(5.2) ds* = 4(dr* — dr* — dz* + (sinh* r—sinh? r)d¢? +2,/2 sinh? r do dt) .

In order to find some properties of Gédel’s universe we consider its embedding in the 10-
dimensional pseudocuclidean space (2.1), given by the following formulas:
=2, z;=2f cos ¢, 23=2fsin ¢,
24=2(2,/2)""* sinh r cos ¢ +1),
23=2(2,/2)"2 sinh r sin ¥($+1),
zg=2f, z,=2r, 2g=2z,
29=2(2,/2)"" sinh r cos ¥p—1),
2,0=2(2\/ 2)'” sinh r sin ¥($-1),

(5.3)

where f2=sinh* r—sinh? r,
Notice that the ¢-curves are closed curves, which will be time-like if

5.9 sinh r>1

and they will be null curves if sinh r=1.

Hence, the ¢-curves which satisfy the condition (5.4) are closed time-like curves of length
2x sinh r (sinh? r—1)'2,

For a ¢-curve (r, ¢, z: constants) be a geodesic it is necessary and sufficient that (2 sihn® r—
sinh r) cosh r=0. Hence, from the $-curves, those for which sinh r=1/./2 are closed space-
like geodesics.

We seck now the geodesic curves contained in the surfaces r=const., z=const. Calling x; =r,
xy=1, X3=2, X, =4, they satisfy the equation
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(5.5)
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{'}dr +2{,} }dr dp +{,'}dp* =0,

which gives

(5.6)

5.7

t=(1/\/ 2 X4 —sinh® r)¢ .
For these geodesic curves, (5.2) takes the form

ds? =(1 —4 cosh? 2r)d¢? .

and therefore it will be a time-like geodesic only if

(5.8)

cosh? 2r<2  or  sinh?r<(y2 -1)2.

Excepting the case sinh r=1/,/ 2, already considered, the geodesics (5.6) are not closed. If

sinh r<1/,/ 2, tis an increasing function of ¢ and if sinh r>1/,/ 2, ¢ is a decreasing function of
¢. Hence, in order that the point corresponding to ¢, + 2n precedes the point corresponding to ¢,,
it is necessary that sinh r>1/,/2 and the geodesic is space-like. The past cannot be influenced
by this way.
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