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INTEGRAL GEOMETRY

L. A. Santalo

1. INTRODUCTION

We shall begin with three simple examples which will show the
basic ideas on which integral geometry has been developed.

1.1. Sets of points. Let X be a set of points in the euclidean

plane E,. The measure (ordinary area) of X is defined by the
integral

(1.1) m(X) = jx dz dy.

Let I be the group of motions in E,. With respect to an or-
thogonal Cartesian system of coordinates, the equations of a
motion w & IN are

z' =2zcos¢p —ysing +a

1.2)

’

Yy =2zsin g+ ycosey + b.

The fundamental property of the measure (1.1) is that of being
147




148 L. A. Santalo

invariant under 9. That is, if X' = uX is the transform of X by
u, we have

(1.3) mX) = [, do’ dy' = [ dzdy = m(x)

as follows immediately from (1.2). It is well known that this prop-
perty characterizes the measure (1.1) up to a constant factor.

Because we are generally interested only in the differential form
under the integral sign in (1.1), we shall write dP = dz dy, or,
more precisely,

(1.4) dP = dz A dy

to indicate that the differential form under a multiple integral sign
is an exterior differential form [see, for example, Munroe (43)].

The exterior differential form (1.4) is called the density for
points in E; with respect to M. We shall always take the densities
in absolute value, :

1.2, Sets of lines. Let X now be a set of lines in E,—for example,
the set of all lines @ which intersect a given convex domain K. We
ask for a measure of X invariant under IN.

Let p be the distance from the origin O to G and 0 the angle
formed by the perpendicular to ¢ through O and the z-axis. We
maintain that this invariant measure is given by

(1.5) m(X) = /X dp db.

For a proof, we observe that by the motion » [Relation (1.2)]
the line coordinates p, 6 transform according to

(1.6) 6 =6+ o, p'=p+acos(0+¢)+bsin(0+¢p)
and putting X’ = 4X, we have
mX') = [ dp' do' = /X dp do = m(X)

which proves the invariance of m(X). That this measure is unique,
up to a constant factor, follows from the transitivity of the lines

under M, since if /X J(»,6) dpdd is invariant we must have
o T, ) dp’ db’ = n f(p,0)dpdb, and, on the other hand,
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according to( 1.6), [x’ f@',6)dp' do’ = [Yf(p', 6') dp d8. From the

last two equalities, we obtain [x f@',6) dp ds = / - f(p, 6) dp dé. <
If this equality holds for any set X it must be true that f(p’, ¢') =
Sf(p, 6), and, since any line G(p, 6) can be transformed into any
other G(p', 8') by a motion, we deduce f(p, §) = constant.

The differential form

1.7) dG = dp A db,

taken in absolute value, is called the density for lines in E,; with
respect to M.

Let us consider a simple application. To get the measure of the
set of lines which cut a fixed segment S of length 7, because of the
invariance under MM we may take the origin of coordinates coinci-
dent with the middle point of S and the z-axis coincident with the
direction of S; then we have i

do = 2.

2w l
18 mGENs=0)= [ @M=L‘?%0
anNS=0

If instead of S we consider a polygonal line T composed -of a
finite number of segments S; of lengths I,, writing (1.8) for each
S; and summing we get

19 /ndG=2L

where n = n(G) is the number of points in which G(p, 8) cuts T
and L is the length of I'. The integral in (1.9) is extended over
all lines of the plane, n being 0 if G N T = 0. By a limit process
it is not difficult to prove that (1.9) holds for any rectifiable curve
[Blaschke (3)].

Conversely, given a continuum of points I' in the plane, if the
integral on the left of (1.9) has a meaning, then it can be taken
as a definition for the length of I', which is the so-called Favard
length [Nébeling (45)].

For a convex curve K we have n = 2 for all @ which intersect K,
except for the positions in which G is a supporting line of K,
which are of zero measure. Consequently we have: The measure
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of the set of lines which intersect a convex curve is equal to its
length.

1.3. Kinemaltic density. Let us now consider a set X of oriented
congruent segments S of length I—for example, the set of those
which intersect a fixed convex domain. The position of S in E,
is determined by the coordinates of its origin P(z, %) and the
angle o formed by S and the z-axis. If we want to define a measure
for X invariant under M, we must take

(1.10) C om(X) = /X dz dy de.

To see this, we first observe that by a motion (1.2) the variables
(z, v, @) transform according to (1.2) and & = a + ¢. Conse-
quently the Jacobian of the transformation is 1, and we have

m(X') = [, do’ dy' do’ = [, dv dy da = m(X)

where X’ = uX, which proves the invariance of m(X). The
uniqueness, up to a constant factor, follows from the transitivity
of M with respect to the congruent segments of the plane by the
same argument previously given for the lines.

If instead of segments we want to measure sets of congruent
figures K, since the position of such a figure is determined by the
position of a point P(z, y) rigidly bound to K and the angle
between a fixed direction PA in K and the z-axis, we can take
the same integral (1.10). The differential form

(1.11) dK = dz A dy A da

is called the kinematic density for E, with respect to the group .
It is always taken in absolute value.

Another form for dK is obtained if instead of the coordinates
(z, y, ) for the oriented segment S, we take the coordinates
(p, 6) of the line G which contains S and the distance ¢t = HP
from P to the foot H of the perpendicular drawn from the origin 0
to G. The transformation formulas are
(1.12) z=pcosf+tsing, y=psind —tcosd a=0—3

B
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and consequently, up to the sign, we have dx A dy A da =
dp A df A di. We may then write

(1.13) dK = dG A dt

where we write G in order to indicate that G must be considered as
oriented (4G = 2 dG).

From this expression for dK we easily deduce the measure of
the set of segments of length I which interseet a given convex

domain K of area F and perimeter L. In fact, calling A the length
of the chord determined by G on K, we have

mS;SNK=0)=2[dpdodt=2 [ +0Ddpdo
, SAK %0
= 2xF + 2IL,

This formula can be generalized to surfaces [see (55)]; an appli-
cation was given by Green (22).

If we ask for the measure of the set of segments S which are
contained in K, the result is not simple; it depends largely on K.
For instance, for a circle C of diameter D = [, we have

m(S; 8 C C) = 7—2r<1rD2 — 2D arc sinll—) — 2lVD? — zz)
>

and for a rectangle R of sidesa, b (a = 1, b
m(S; S C R) = 2(wab — 2(a + b)l + 13).

An unsolved problem is that of finding among all convex
domains K with a given perimeter those which maximize the
measure m(S; S C K) of the segments of a given length which
are contained in K. For { = Q0 the problem is the classical iso-
perimetric problem and the solution is well-known to be the circle.

The preceding very simple examples show the three steps which
constitute the so-called integral geometry in the original sense of
Blaschke (3): (1) definition of a measure for sets of geometric
objects with certain properties of invariance; (2) evaluation of
this measure for some particular sets; and (3) application of the
obtained result to get some statements of geometrical interest.
The same examples show the basic elements which are necessary

1), we have

R
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to build the integral geometry from a general point of view:
(1) a base space E in which the objects we consider are imbedded
(in the preceding examples, E was the euclidean plane E,); (2) a
group of transformations & operating on E (in the preceding
examples O was IM; (3) geometric objects F contained in E which
transform transitively by ® (in the preceding examples, the geo-
metric objects were points, lines or congruent figures).

Given E, @, and F, the first problem of the integral geometry
is to find a measure for sets of F invariant under ®.

2. GENERAL INTEGRAL GEOMETRY

2.1. Density and measure for groups of matrices. Though the
integral geometry deals with general Lie groups, from the geo-
metrical point of view in which we are principally interested it
suffices to consider Lie groups which admit a faithful representa-
tion, that is, which are isomorphic to a matrix group. We need
some facts about groups of matrices, which we shall compile in
this section. For a more general treatment, see Chevalley (12).

Let ® be a group of » X n matrices of dimension r, that is,
each matrix u € ® depends on r independent parameters a,,
as, - -+, a,; more precisely, each matrix 4 € & is determined by a
point a = (ay, as, - - -, a,) of a differentiable manifold of dimension
r, which we shall denote by the same letter &; ay, a, - - -, a, are then
the coordinates of a in a suitable local coordinate system.

Let ¢ € ® be the unit matrix and »! the inverse of v € ©®. If
du denotes the differential of the matrix u, the equation

(2.1) wu+du) =et o

defines a matrix w = u~! du of linear (pfaffian) differential forms
which is called the matrix of Maurer-Cartan of &. The elements
wi; of w have the form w;; = a;j day + -+ - + aijr da,, where the
coefficients a; are analytic functions of ay, as, - - -, a,. From these
n? pfaffian forms w,; there are r linearly independent (base of the
vector space dual of the tangent space of &) which we shall de-
note by wy, we, -+, wr; they are called the forms of Maurer-Cartan
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of @ and are defined up to a linear combination with constant
coefficients.

The fundamental property of the matrix w is that of being left
invariant under . For if u’ = su (s is a fixed element of ©), we
have duw' = sdu, and therefore o = w''du’ = u'lslsdu =
wldu = w.

As a consequence, the r forms of Maurer-Cartan are also left
invariant under &, and this fact characterizes these forms up to a
linear combination with constant coefficients. For a proof, we
observe that since the forms of Maurer-Cartan w, - - -, w, are in-
dependent, each pfaffian form Q@ may be written Q(a, da) =
i di(a)w:. If Qis left invariant under &, we have

@ = 2] Ada )1 = =7 Aa)w;
and since wi = w;, we have
21 (4:(a) — Aia))w: = 0.
Because of the independence of w;, it follows that A;(a’) = A.(a),
which implies 4; = constant. (Since we are interested only in the
left invariance, we shall hereafter speak simply of invariance,
understanding that it means left invariance.)

Notice that by exterior differentiation of w = uw~!du, taking
into account that du=—! = —u~!du u!, we get

(2.2) do = —ulduu! Adu= —o A o

This matric equation includes the expression of the exterior
differentials dw; of the forms of Maurer-Cartan as linear combina-
tions with constant coeficients of the products w; A wi; these
expressions are called the equations of structure of Maurer-Cartan
for the group ©.

2.2. Density and measure in homogeneous spaces. Let 9 be a
subgroup of ® of dimension r — A. Suppose that 9 itself is a
Lie group isomorphic to a matrix group. We want to find the
conditions for the existence of a density (that is, an element of
volume) in the homogeneous space /9 (= set of left cosets s9,
s € @) invariant under ®. For this purpose, we notice that the
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submanifold § of the differentiable manifold ® and its left cosets
s9 (s € O) are the integral manifolds of a pfaffian system.

(2.3) w = 0, wg = 0, cee, wy = 0.

Because  and its left cosets as a whole are invariant under ®,
the left side members of (2.3) will be linear combinations with
constant coefficients of the forms of Maurer-Cartan of &, and,
because these forms are defined up to a linear combination with
constant coefficients, we may assume that they are the A first
forms of Maurer-Cartan of &.

Because w; is invariant under ®, the differential form

(24) 9;.=w1/\w2/\~"/\w;.

will be also invariant under ®. However, @ is not always a density
for &/ because its value can change when the points a & ®
displace on the manifolds s§. We shall now prove the following
theorem,

THEOREM: A necessary and sufficient condition for Qu to be a
density for &/ 1is that its exterior differential vanish, that s,

(2.5) % = 0.

Proof: To prove this theorem, we observe that the submanifold
O and its left cosets fill up the manifold @ in such a way that for
each point of & passes one and only one submanifold. Thus, the
system (2.3) is completely integrable and it is consequently equiv-
alent to a system of the form

(26) dE]_ = 0, dfz = 0, Tty dEh = O,

where §&; = £;(ay, as, - - -, a,) are functions of a, such that the mani-
folds s are represented by &; = constant (¢ = 1,2, ---, h). We
can make in & the change of local coordinates (a;, as, - -, a;)
— (&1, &, -, En, Thyy, -+ +, Zr). Since the systems (2.3) and (2.6) are
equivalent, we have

(2'7) Qh = A(sy (E) dsl A dEZ N A df),,

where A (¢, x) denotes a function of &, - - -, &, Tpya, + -+, . When
the point a(&, &, - - -, &, Tas, * -+, ;) varies on s, the coordinates
£; are constant, and, therefore,
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(28) 8 = z % dx,— A ds; A A dE;.
7=h+10%;

On the other side, by exterior differentiation of (2.7), we get

2 9A

dh = 3 ——d§; Ada A -+ Adb
j=1 0&; »

T 94

>

dz; A der A -+ A dEy = 8,
j=h419%;

because the first sum vanishes. Consequently, so that 6, = 0—
that is, for @, to be invariant by displacements on the manifolds

8P, it is necessary and sufficient that d@, = 0. This proves the
theorem.

If © reduces to the identity, then &/ =® and Q, = w1 A
w2 A -+ A wr gives the invariant density (= element of volume)
of ®, which in integral geometry takes the name of kinematic
density of ®. The integral of Q, gives an invariant measure for &
(Haar’s measure) which is unique up to a constant factor.

2.3. The examples of the introduction. To exemplify these gen-
eral results, we shall consider the examples appearing in the
introduction.

The group of motions & = 9N in E; can be represented by the

group of 3-dimensional matrices,

cosSe —sin¢ a
(2.9) , % =|sin ¢ cos¢ b
0 0 1

with the parameters a; = a, @z = b, a3 = ¢. We have
cos¢ sin¢ —bsin g — acose
wl=|-—sine cosg —bcoseg+ asn ¢
0 0 1
—sin ¢odp —cosepde da
du = coseode —sin ode db
0 0 0

and, therefore,
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0 —de cos ¢ da + sin ¢ db
=y~ ldu ={de¢ 0 —singda+ cosedb
0 0 0

The forms of Maurer-Cartan are
(2.10)
wy =cosSpda 4 sinpdb, wy = —singpda+ cosedb, w; = dop,
and the equations of structure _
0 0 —w A w
do=—wAw=—{0 0 w3 A w }
00 - 0
That is,
(211) dau = —(Wwg /\ w3, dwz — w3 /\ wi, dw3 = 0
The kinematic density of I is
dK = an A we A ws = da A db A do,

which, up to the notation, coincides with (1.11).

Let ©; be the subgroup of M consisting of all motions which
leave the line G(p, §) invariant {equation of G:x cos 6 4+ y sin § —
p = 0). There is a bijective mapping between the lines G of E,
and the points of the space M/ H:. As density for lines, we take
the density of /9.

By the change of coordinates (a, b, ¢) — (p, 6, t) in M, given by
the equations,

a =7pcosb 4 tsind, b=psind —{ cos, p=10 —

p=acosf -+ bsiné, = asinf — bcoso, =go+7—2rr

the points of M/ H; are p = constant, # = constant. The system
(2.6) isdp = 0, dd = 0, and the system. (2.3) is

dp = cosfda+ sinfdb = —sinpda + cos pdb = w; = 0,
dd =do = w3 =0.
Therefore, the density for lines takes the form
(2.12) dG = w2 A ws = —sin g da A de + cos ¢ db A de
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which is equivalent to

(2.13) dG = dp A df,
" as stated in (1.7).

If 9o is the subgroup of M consisting of all motions which leave
the point P(a, b) invariant, there is a bijective mapping between
the points (a, b) of E; and the points of the homogeneous space
I/ Do. The system (2.6) is now da = 0, db = 0, and (2.3) gives
w; = 0, we = 0. The density (2.4) for points results in

(214) dP = wr A we = da A db,

which coincides with (1.4). In both cases (2.13) and (2.14), the
condition (2.5) is obviously satisfied.

To give an example in which the homogeneous space ®/9 has
not an invariant density, let us consider the 4-dimensional group
© of matrices of the form

a 0 a
u=[0 a as), aa;#0,

0 0 1

and the 2-dimensional subgroup § of matrices of the form

a1 0 0 .
U = 0 asz 0 , 103 = 0.
0 0 1

To obtain the forms of Maurer-Cartan of ®, we have

art O —aila)\ fday O  da,
w=ylduy = (0 a_-;“l —az ‘a4> (0 das dm)
0 0 1 0 0 0
w1 0 [4)
= (0 w3 w4>,
0 0 0

wp = al“ dal, Wy = al“ daz, w3 = ag_l das, Wy = 03_1 da4.

where

The subgroup 9 is characterized by a, = 0, as = 0, and, there-
fore, the system (2.3) is now w; = 0, ws = 0. The differential form
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Oy = wy A wy is not a density, because dQ = —w; A we A wg —
ws A w2 A oy # 0.

3. INTEGRAL GEOMETRY IN THE
THREE-DIMENSIONAL EUCLIDEAN SPACE

3.1. The group of motions in E;. We shall consider in detail the
integral geometry of the 3-dimensional euclidean space: The base
space is Ej and the group ® is the group of motions I in it.

Let z represent the one-column matrix formed by the orthogonal
coordinates &, %, Z: of a point P. The matrix equation of a mo-
tionz —>z'is
3.1 ' = Az + B,

where

G G2 03 1
(32) A =lau Qa2 as]), B = b2 y
Gy Gy As bs

and A satisfies the conditions of orthogonality
(3.3) At = At (A* = transposed of A).

The condition (3.3) reduces to 3 the number of independent
parameters a,; which, with by, by, and b;, are the 6 parameters on
which It depends.

The group Pt can be represented by the 4 X 4 matrices,

3.4)

with the ordinary rules,

A, 4, A,B, + B,
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The matrix of Maurer-Cartan is
A-1dA ; A—1dB

If we introduce the two matrices
(3.5) wg = A~1dA, wp = A~'dB
of order 3 X 3 and 3 X 1, respectively, the equations of structure
can be written
(3.6) dws = —wa N\ wg, dwp = —wa A wp.

Since I is a 6-parameter group, we must have 6 pfaffian forms
of Maurer-Cartan. Effectively, from (3.3) and (3.5) we deduce
was = A*dA = —dA* A = —u4, and the 6 forms are the elements
of the matrices,

0 wy2 w13 wy
W4 = | —wi2 0 wag P wp = | w2 p
—wiy Wi Wiy w3

which, explicitly, give
3 3
(37) Wi = ——Whs = 'zl aj; da,-;., Wy = .21 Aj¢ db,
i= j=

It is useful to give a more geometrical approach to the pfaffian
forms wy, and w;. Let us consider in E; a fixed frame (Qo; €3, €3, €3)
composed of a point @ and three orthogonal unit vectors ef, and
a moving frame (Q; e, e, €;3) which results from the fixed frame
by the motion % represented by (3.1). If we introduce the matrices

(3.8) e = (e}, e, e3), €= (e,ese)
we can write
(3.9) Q = ¢" B, e=¢e"4,

and, therefore,
dQ = e dB = ¢ A-1 dB = ewp,

de = e*dA = ¢ A7V dA = ew,,

(3.10)
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which may be written

3 3
(3.11) . dQ =3 w;€j, de;= 3% wW;i€j.
ji=1 ji=1

These formulas are useful for the computation of densities, as
we shall see in the next section. Because of the orthogonality of
the unit vectors e;, we have e;e; = §;;, and from (3.11) we deduce

(3.12) w; = e; dQ, wji = e; de;, -
which are the vectorial form of the equations in (3.7).

3.2. The area element of the unit sphere. We need to remember
two expressions for the element of area of the unit sphere. Let »
be the unit vector with the components

(3.13) w1 = sin 0 cos ¢, v, = sin 0 sin ¢, v; = cos f

where 8, ¢ are the ordinary spherical coordinates corresponding to
the endpoint of ». The area element at this endpoint is known
to be

(3.14) do= (pwv,)dd A de =sinbdd A do

where (v v v,) denotes the scalar triple product of the vectors
v, v, and v, (subscripts denote partial derivation). Taking (3.13)
into account, we have also

(3.15) do = dve N\ dyz _ dvy A\ dn _ dv, A dvz’
151 4] Vs
and since »} 4+ 3 + »§ = 1, we deduce
do = vidvys A dvs + vadvs A dvy + vadvy A dye.

On the other hand, if e, €, and e; are the 3 orthogonal unit
vectors of a moving frame, we have

ey des A ez des = ey(es df + 3, dp) A eses d 4 es, do)
= (e1630° €263, — €1€30° €2€30) A A dop
= (e1 A €2)-(ess A €35) d8 A dop
= (esese30) d0 A dp = do

where do denotes the area element of the unit sphere correspond
ing to the endpoint of e;. From (3.12) and (3.16), we get

(3.16)
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(317) dO' = w3 A wa3.

We have now at our disposal all elements necessary to find the
densities for points, lines and planes of E; invariant under .

3.3. Density for points. Let Do be the set of motions which
leave the point @(b;, bz, bs) invariant; clearly it is a subgroup of
M. According to (3.11), to keep Q fixed we must have

w = 0, Wy = 0, w3 =<0,
which is the system (2.3), and, according to (2.4), the density
for points will be w; A w2 A w3 = db; A dbs A dbs [applying (3.7)
and taking into account the determinant |a.; = 1, because the

matrix A = (as;) is orthogonal]. In general, for the point P(z, y, 2),
we shall have

(3.18) dP = dz A dy A dz.
The condition (2.5) is obviously satisfied.

3.4. Density for planes. Let $, be the set of motions which
leave the plane E(ey, ¢,;) invariant; clearly it is a subgroup of .

By the motions of . the unit vector e¢; remains fixed and the
point @ can only move on the plane ¢, ¢;; therefore, according to
(3.11), the pfaffian system which characterizes the planes is

w3 = 0, w13 = 0, we3 = 0,
and the density for planes results:
(319) dE = w3 A w13 A Wa3z.

If 6, ¢ are the spherical coordinates of the endpoint of e, (3.14)
and (3.17) give

(3.20) wis A wey = do = sin 8 df A de.

If p is the distance from the origin @, of the fixed frame to the
plane E, and a;; = sin 8 cos ¢, as = sin6sin ¢, az = cosf are
the components of e; (normal to E), we have p = a3b) + azbs +
axbs, and, according to (3.7),

3
(3.21) w= 2 apdb; = dp+ Rd + 8 do.
=




162 L. A. Santalo

Here, R, S are functions of 6, ¢, b;, the explicit form of which has
no interest for us. From (3.19) and (3.20) we get

(3.22) dE = sinfdp A df A do = dp A do.

The condition (2.5) is obviously satisfied, and hence we have:
If a plane E is determined by its normal e; and its distance p to a
fixed origin, the density is given by (3.22), where do denotes the
area element of the unit sphere corresponding to the endpoint
of the unit vector es. -

As an exercise, prove that if the plane is given by the equation

uz + vy + wz + 1 = 0, its density takes the form
_ du Adv A dw
dE = (w2 + o2 + wz)z‘

Example

Let S be a fixed segment of length I. To compute the measure
of the set of planes E which intersect S, we take S on the e$-axis and
the middle point of S as the origin of coordinates. Then we have

(3.23) mE;ENS #0) = [ dE
ENS»0
I rox x .
=5 o dwj; |cos 8] sin 6 d = =l.
If T is a polygonal line of length L, writing (3.23) for all sides
of T and adding, we obtain

(3.24) [ ndE = =L,

where n denotes the number of intersection points of £ with T
By a limit process it is not difficult to prove that (3.24) holds for
any rectifiable curve. The integral in (3.24) is extended over all
planes of K3 n being 0 for the planes which do not intersect I

3.5. Denstty for straight lines. Let ©; be the set of motions
leaving the line G which contains the unit vector e; invariant;
clearly ©, is a subgroup of M.

By a motion of §,, the point @ can only move in the direction
of e;, and, therefore, (3.11) gives wy = 0, wz = 0. Moreover, be-
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cause ¢; is fixed, from (3.11) we deduce wiz = 0, w3 = 0. The
pfaffian system (2.3) for the lines of E; becomes

(3.25) wp = 0, Wy = 0, w1y = 0, w3 = 0,
and the density for lines is
(3.26) di = w1 A wz A wiz A w.

According to (3.12), w1 A wp equals the area element of the
plane (e, €;) at the point @, and we have seen that wiz A wey is
the area element of the unit sphere corresponding to the endpoint
of e, that is, to the direction of G. If G is determined by its direc-
tion e; and its intersection point (z, ) with a fixed plane, denoting
by ¢ the angle between e; and the normal to the fixed plane, we
have w1 A w2 = |cos¢| dz A dy, and we can write (3.26) in the
form

(3.27) dG = |cos¥| dz A dy A do.

From (3.26) and (3.6) it is easy to show that the condition (2.5)
is satisfied.

As an exercise, prove that if G is given by the equations z =
az + p, y = bz + ¢, then its density is

dG:da/\db/\dp/\dq_
(1 + a? + b?)?
Example

Let Z be a fixed surface of class C! (= with a continuous tangent
plane). If P denotes a point of the intersection G M Z and df
denotes the area element of = at P, the density for lines can be
written dG = |cos ¢| df A do, where ¥ denotes the angle between
@ and the normal to £ at P. Fixed P, the integral of |cosy| do
extended over all the lines which pass through P, gives the projec-.
tion of one-half the unit sphere upon a diametral plane—that is, .
The integration of df over the whole Z gives the area F of Z. There-
fore, taking into account that each line has been counted as many
times n as it has intersection points with Z, we get

(3.28) [ ndG = =F,
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where the integral is extended over all lines of Ej;, n being 0 for
the lines which do not intersect Z.

3.6. Kinematic density. The kinematic density is
(3.29) dK = A w2 A w3 A wiz A o3 A 0.

To give a geometrical interpretation to wi = e de;, we observe
that if we take on the plane ey, e; two fixed orthogonal unit vectors
e}, e5 and call a the angle between e¢; and e}, we cdn write ¢, =
cosael + sinael, e, = —sina el + cos a e}; therefore, e de, =
~da. That is, w2 means an elementary rotation about the e;-axis.
Consequently, according to (3.17) and (3.29), if & motion is deter-
mined by the position of the moving frame (Q; e, €, €3), the kine-
matic density has the form

(3.30) dK = dP A do A de,

where dP is the volume element of E; at the origin @ of the moving
frame, do is the area element of the unit sphere corresponding to
the endpoint of e;, and de is the element of rotation about e;.
We remember that we always consider the densities in absolute
value; thus, there is no question of sign. '

Let us do an application of (3.30). Let T be a fixed curve with
continuous tangent at every point and finite length L and let =
be a moving surface of class C! and finite area F. Let Q be a point
of T' M Z and let ¢; be the normal to = at Q. If 8 denotes the angle
between e; and the tangent to T at Q@ (which we may take as the
e3-axis of the fixed frame) and df denotes the area element of =
at @, we have dP = [cos 8| df A ds (s = arc length of T'). Putting
this value in (3.30) and integrating over all the positions of Z in
which it has common point with T, because each position of =
will be counted as many times » as intersection points have =
and T, we get

(3.31) [ ndK = 4x°FL.

Notice that the same formula holds if we suppose = fixed and T
moving with density dK.
If = is the unit sphere, we can take the origin of the moving
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frame at the center of £; then we have / n dK = 8r? [ n dP, and
(3.31) gives

(3.32) ] ndP = 2rL,

which is valid for any rectifiable curve (51).

3.7. A differential formula. In Section 5 we will need an im-
portant auxiliary formula which derives from (3.30). Let Z, be a
fixed surface of class C'. At each point @ of =, we consider an
orthogonal frame (Q; e}, €3, €3) with origin at @ and with €3 normal
to Z,. If the displacement vector on Z; at @ is wie} + wsed, the area
element is df = w1 A w,. To the unit vector ¢ tangent to Z, at Q
which forms with ¢f the angle o, is attached the differential form
dLy = w1 A w2 A dro called the density for line elements (@; €°) on
T,, and the pfaffian form ds = cos o w; 4 sin 79 ws called the ele-
ment of length corresponding to the direction e°.

Now let Z; be a moving surface of class C!, and assume that
the intersection 2o N 2 is a rectifiable curve I'. Let @ be a point
of I" and (Q; e, €3, ¢3) be an orthogonal frame with e; perpendicular
to Z,. Let ds be the length element of I at @ and ds,, ds; those
normal to T on 2, and Z,, respectively. Let 6 be the angle between
the normals €}, es. If dfy, df) are the elements of area of Z,, Z, at Q
and dP denotes the element of volume of F; at Q, we have dP =
sin 0 dfo A dsi and dfy = ds A ds;. The element of area of the
unit sphere at the endpoint of ¢; may be written de = sin8df A dr.
Putting now dr, = da to unify the notation of (3.30), from this
equation and the preceding relation, we deduce immediately (up
to the sign)

(3.33) ds AdK =sin20dfo A dro A dfi A dry A d8
= sin? 0 dLo A dL; A db,

which is the differential formula we want. .
An immediate consequence is obtained by integrating both
sides over all positions of the moving surface Z;. We get

(3.34) [ LdK = 2x°F,F,
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where L denotes the length of the curve Zp N Z,, and Fy, F, are
the areas of Zy, Zi, respectively.

If 2, is the unit sphere and we take the origin of the moving
frame at the center of =,, we have

[LdK = 81r2[LdP1
and (3.34) gives
(3.35) [ LdP = =F,.

3.8. A definmition of area. Let now Z;, 2; be two moving unit
spheres and 2, a fixed surface. Let N be the number of points
of the intersection Zo N Z; N 2. If dP; denotes the volume ele-
ment at the center of =, (2 = 1, 2), we get from (3.32) and (3.35)

f N dPydP, = 2r / L dP, = 21F,,

Conversely, this result conduces to define the area. of a con-
tinuum of points by the formula

1 .
Fy = ﬁ/NdPl dP,

provided the integral of the right-hand side exists [see (52)].
Applications of the integral geometry to the definition of area
for k-dimensional surfaces have been made by Federer (17-19)
and Hadwiger (23) and (25). See also Noébeling (45) and (46).

3.9. Planes through a fixed point. Let us now consider the set
of planes E, which pass through a fixed point O. The density for
sets of Ky invariant under the group M, of the rotations about 0,
is clearly dE, = do, where do denotes the area element of the unit
sphere corresponding to the direction perpendicular to £y, In fact,
this differential form is invariant under o, and, because of the
transitivity of the planes E, with respect to M, it is unique up
to a constant factor. The planes E, are considered non-oriented;
therefore, the measure of all the planes through O will be

(3.36) f dEo = [, do = 2m,

where 3$Z denotes the half of the unit sphere.




INTEGRAL GEOMETRY

Let S be a fixed arc of great circle on the unit sphere of center O
of length a. The measure of the set of planes E, which intersect
S (= measure of the set of great circles which intersect S) will be
the area of the lune bounded by the great circles the poles of
which are the endpoints of S—that is, m(Eo; S N Ey < 0) = 2a.
If instead of S we have a spherical polygonal line T'-the sides of
which have the lengths «:, we have, writing the last formula for
each side and adding,

(3.37) j n dE, = 2L,

where L denotes the total length of I'. The integration is extended
over all (non-oriented) planes through O—that is, according to
dEy = do, over half the unit sphere. By a limit process we can
prove that (3.37) holds for any rectifiable spherical curve of the
unit sphere.

Following Fenchel (20), we want to apply (3.37). Let K be a
closed space curve of class C? without multiple points and let T
be the spherical indicatrix of it (= the curve T = T(s), where T’
is the tangent unit vector to K). The arc length element of I' is
ds, = |x| ds, where x denotes the curvature and s the length of K.
Consequently, (3.37) yields

(3.38) [naBo=2 [ Ix| ds.

Every closed space curve K has at least 2 tangents which are
parallel to an arbitrary plane. This means that every plane E,
intersects I' in at least 2 points. Hence, n = 2, and (3.36) and
(3.38) give

(3.39) /K x| ds = 2,

a classical inequality of Fenchel.

If K is knotted, it is easy to see that it has at least 4 tangents
parallel to an arbitrary plane. Hence, n = 4, and (3.36) and (3.38)
give the following inequality of Fairy (for knotted curves) (16),

(3.40) [K x| ds = 4n.
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These results have been generalized to closed varieties in E, by
‘Chern and Lashof (11).

4. APPLICATIONS TO CONVEX BODIES

The integral geometry is closely related to the theory of convex
bodies. We compile in this section some simple facts on this theory
from many sources—for example, Bonnesen and Fenchel (4),
Busemann (5), Hadwiger (24), and Vincensini (72).

Let k& be a plane convex set of area f placed in E;. Let f, be
the area of the orthogonal projection of % on a plane perpendicular
to the direction o, and let 8 be the angle between o and the normal
to the plane which contains k; we have f, = |cos 8| f. If do denotes
the area element of the unit sphere Z corresponding to the direc-
tion o, we have

1) [,$.da =1 [ do [ Icos 6] sin 6 db = 2af,

and, therefore,

“2) f= %r [, 5. do.

Now let K be a convex body of E;; we shall denote by 3K the
convex surface bounding K. Let F be the area of dK and F, the
area of the orthogonal projection of K on a plane perpendicular
to the direction o. Applying (4.2) to each element of area of dK
and integrating over all 4K, we get

1
4.3) == /Z F, do,

known as Cauchy’s formula for the area of a convex body.

Let O be an interior point of K and p = p(s) = p(8, ¢) be the
supporting function of K with respect to O (= distance from O to
the supporting plane perpendicular to the direction ¢ of spherical
coordinates 8, ¢). The convex body K, parallel to K at distance h
has the supporting function p, = p(o) + h, and if R,, R, are the
principal radii of curvature of 4K, those of 9K, at corresponding
points are R, + k and R, + h. Between the area element df of

e ———— ) a1 s 4
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3K and the area element do of its spherical image, there is the
relation df/de = R.\R,, and consequently, we have

(4.4) F= [ R, do.
Applying this formula to dK,, we get
@.5) F,= fz (Ry + h)(Ry + ) do = F + 2Mh + 4rh?,

where

1 1 1 1
(4.6) - B4Ry =1 ax(RI+Ta;> af

is the integral of mean curvature of dK. If V denotes the volume
of K and V, that of K;, from (4.5) we deduce

@7 Vi= V+/;hF,.dh= V 4+ Fh + Mh® + 4xh3,

which is the so-called Steiner’s formula for parallel convex bodies
in Ea.

For plane convex sets, the formula analogous to (4.7) is
4.8) o=+ uh + =h?

where v = length of k. Applying (4.8) to the orthogonal projec-
tion of K on a plane perpendicular to the direction ¢, we have

Fop = F, 4+ uh + wh?,
and by Cauchy’s formula,

1 1 h
4.9) Fy= ;]Z Fondo = - fz F.do + - fz u, do + 4h?.

Comparing (4.9) with (4.5), we get (since both formulas hold
for any h) :

1
(4.10) M= /Z % do,

which is a very useful expression for the integral of mean curvature
of the boundary of a convex body.

On the other side, considering the volume V of K as a sum of
pyramids with the common vertex O, we have
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(4.11) V=3[ pdf=1} [ZpRle do.
Applying this formula to K,, we get

Va=3 [, @+ BB+ BB + b do

=V + 1 [ (R + p(Ry + R) do

% 4
+3 [, @+ B+ Ry do + 5 aht

Comparison with (4.7) yields
“12) F= %jzp(R, +R)de, M= /Zpdcr.

The last formula allows definition of M for any convex body
without the conditions of regularity necessary to define the prin-
cipal radii of curvature of dK. A practical way to compute M
for convex surfaces 9K not sufficiently smooth is to compute the
integral of mean curvature M, of the parallel surface 9K, (which
is smooth) and then to pass to the limit for A — 0. This method
yields the following results easily. (1) For a convex polyhedron
the edges of which have lengths a; and the corresponding dihedral
angles of which are a;, we have :

M = %Z (1!' - a;)a,-.
(2) For a right cylinder of height 2 and radius r,
M = ah + =°r.

(3) For a plane convex domain, considered as a flattened convex
body of Ej3, we have

M=%u,

where u is the length of the boundary of the domain.

Notice that, according to (3.22), the second formula (4.12)
gives the measure of the set of planes £ which cut K—that is,
we have the formula
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(4.13) [ dE = M.

ENK =0
On the other side, applying (3.28) to convex surfaces (n = 2),
we get

T
(4.19) [ a6 = 3 F.
GNK =0

We may therefore state:

The volume V of a convex body K is the measure of the points
contained in it; the area F of 3K is (up to the constant factor w/2)
the measure of the lines which intersect K; the integral of mean
curvature M 1s the measure of the planes which intersect K.

These integral geometric interpretations of ¥V, F, and M have
been generalized to convex bodies of the n-dimensional euclidean
space [(60) and Hadwiger (23) and (25)].

5. THE KINEMATIC FUNDAMENTAL
FORMULA IN E, '

5.1. The Euler characteristic of a domain. Let T be a closed
surface in E; which is of class C? and bounds a domain D of vol-
ume V. If df is the area element of = and do the area element of
the corresponding spherical image, we know the formulas

do 1 1
(5.1) FoEm 1= /Emdf = 4y,

where Ry, R; are the principal radii of curvature, I(Z) denotes
the area of the spherical image of Z, and x = x(D) is the Euler
characteristic of D. Because Z is closed, its spherical image covers
the unit sphere an integer number of times, and therefore x =
I(Z)/47 is an integer. For example, for domains topologically
equivalent to the solid sphere, x = 1, and for domains which are
topologically equivalent to a torus, x = 0 [see, for example,
Struik (69, p. 159)].

If Z is not of class C? but consists of a finite number of faces
(= pieces of class C?) which intersect along edges (= closed
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curves of class C?), the Euler characteristic is obtained adding
to the area of the spherical image of the faces (5.1) the area of the
spherical image corresponding to the edges, which we shall now
compute. Let T be an edge of 2 and let T, N, B, denote its unit
vectors tangent, principal normal, and binormal; let s be the arc
length of I. If e, e are the outward normal unit vectors to the
faces of = at the points of I' and we call 6, 8] the angles which
they form with —N, the spherical image corresponding to T is
the portion of unit sphere defined by the equation,

Y(s,6) = —cos6 N +sin6B (B <0=<6,0<s<1L)

where L is the length of I.

Using Frenet’s formulas, we have Y =1, Y, ¥, = —r, V% =
2 cos? 8 4 72, (Y3Y% — (Y.Y5)?)2 = xcosd, where x and 7 are
the curvature and the torsion of I'. The area I(T') of the spherical
image corresponding to I' will be

G2) I = /r x c0s 0 d6 ds = [r (sin 6, — sin 6,) ds.

Under the assumption that 2 has no vertices (= points in
which more than two different faces intersect), the Euler char-
acteristic of 2 is given by the second formula (5.1); we take into
account that at the left side, the integral analogous to (5.2) for
all the edges of T should be added.

5.2. The kinematic formula. Let Do, D, be two domains of E;
bounded respectively by the surfaces 2o, 2, which we assume to
be of class C%. Let V., x: be the volume and the Euler character-
istic of D; and let F,, M; be the area and the integral of mean
curvature of Z; (z = 0, 1). Suppose Dy is fixed and D, is moving,
and let dK be the kinematic density for Dy. If &(Dy (M D)) denotes
a function of the intersection Dy M Dy, one of the main purposes
of the integral geometry is the evaluation of integrals of the type

(5.3) J = f &(Dy N Dy) dK

over all positions of D;,. For example, if ® = Vy = volume of
Dy N Dy, we can easily prove that f VoudK = 8r*V,V,, and if
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& = Iy is the area of the boundary of Do M Dy, the formula
[ Fo dk = 8x2(VoFy + ViF,) holds (50). The most important case
corresponds to ® = x(Do M Dy) is the Euler characteristic of
Do N D,. Surprisingly enough, the integral / x(Do M D,) dK over

all positions of D, can be expressed by only V,, x;, Fs, M; & = 0, 1).
The result is the following:

(5.4) [ x(Do N Dy) dK = 872 (Voz: + Vixe) + 2w (FoM:y + FiMo).

This result is the so-called kinematic fundamental formula, which
we shall now prove.

We need to compute x(Do M Di). The boundary of Dy M D,
consists in a part 2y of 2, which is interior to D, and a part 2y
of 2, which is interior to Dy. Both Ty and 2y are of class C? and
are joined by an edge T = Z, N =Z,, composed of one or more
closed curves, of the boundary of Do M D;. According to (5.1)
we will have

(5.5) 4rx(Do N Dy) = I(Za) + I(Z0) + I(T),

and we can write

(5.6) 4 / x(Do N\ D) dK = j I(Z0) dK
+ [ 1zw) &K + [ I(T) K,

where the integrals are extended over all positions of D,.

The first two integrals on the right-hand side of (5.6) are easily
evaluated. Taking the first integral, let P be a point of 2 N Dy
and let dop denote the area element of the unit sphere at the
spherical image of P. By first fixing D; and then letting P vary
over Zo (N Dy, we get

dop dK = [ 1(Zo) dK,
PeZonND

and by first fixing P and then rotating D, about this point and
letting it vary over Dy and Z,,
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dop dK = [ dop [ dK = 8x°V, / dop
PEZoNDy PEZ PED; PEZ,
= 87!'2VII(20) = 3211’3V1xo.
Thus, we have

(5.7) [ I(Z0) dK = 320V 1y,

Similarly, by the evident invariance of the kinematic density
under the inversion of the motion, we have

(5.8) [ I(Z0) dK = 3209V oy,

It remains to evaluate the third integral in (5.6). Let Q be a
point of I'. By Meusnier’s theorem, if p is the radius of curvature
of I' and R, r are the radii of normal curvature of Ty and 2, in the
direction of the tangent to I at Q, we have

(5.9 p=Rcosb = rcosé,

where 6, 6] are the angles between the outward normals e;, ¢} to
Zo, Z1 at Q and the vector — N opposite to the principal normal N
of I at Q. Taking into account the identity

sin 61 — sin §;
cos ] + cos 6,
and putting 6] — 6, = 6, we deduce from (5.9) and (5.10)

(5.10) tan 3 (6 — 8,),

R "7 2
If 7, 71 denote the angles between the tangent to T at Q and

~ the first principal direction of 2o, 2 at @, by Euler’s theorem
we have

(5.11) sinf] — sin6, = p (—1— + 1) tan 1 6.

1 _cos’ry | sin? 7

(5.12) i R R

where R, R, are the principal radii of curvature of Zo, and 1y, 7,
are those of 2, at Q. By (6.2), (5.11), and (3.33) we have

_ cosro , sin®ry  cos?r . sin? T
619 [ 1) ax - /(T+T2+T+T)

tan 7}0 S'lIl2 [/} dfo dTo dfl dn d0,

¥
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where the limits of integration for the angles are

0= 1= 27, 0=m Z 2n 0<0=nm

Computing the integral in (5.13), we get
(5.14) j I(T) dK = 8r*(FM, + F.Mo).

Adding (56.7), (5.8), and (5.14), and considering (5.6), we get the
desired result (5.4).

The formula (5.4) is the work of Blaschke (3). It has been gen-
eralized to E. by Chern (8). For the generalization to spaces of
constant curvature (noneuclidean geometry) see Wu (76) and
(54), (67), and (58). For another kind of proof valid for more
general domains than those considered here, see Hadwiger (23).

Notice that if Dy, D; are convex bodies, we have x(Do) =
X(Dx) = X(Do m D1) =1 if Do n D1 = 0, and X(Do n Dl) = 0,
if Dy N\ Dy = 0. The formula (5.4) yields

(5.15) / dK = 8x2(Vo + Vi) + 2¢(FoMy + Fi\My),
Do ND170

which gives the measure of the set of congruent convex bodies D,
having a common point with a fixed convex body D.
If D, is a sphere of radius r, we can take the origin of the moving

frame at the center of Dy; then we have f dK = 8x? / aP, and
(5.15) gives

[ dP = Vo + For + Ma® + $mr%,
the Steiner’s formula (4.7).

6. INTEGRAL GEOMETRY IN COMPLEX SPACES

6.1. The unitary group. The integral geometry of complex spaces
has not been developed very much, and it deserves further study.
We shall give a simple typical example. A

Let P, be the n-dimensional complex projective space with
the homogeneous coordinates z;(¢ = 0,1, ---,n), so that z =
(20, 21, 23,  * , 22) and Az = (Azg, A2y, - -+, Azn), Where X is a nonzero
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complex number; define the same point. Let z; denote the complex
conjugate of z., We assume the homogeneous coordinates z; are
normalized so that

6.1) (22) = %z,-?.; =1,

which determine z; up to a factor of the form exp (ia).

We consider the group U (unitary group) of linear transforma-
tions i
6.2) 2 = Az
which leaves the form (6.1) invariant. The matrices A satisfy
(6.3) AZt=E, A'=4y, AA=E,
where E is the unit matrix. These relations show that U depends
upon (n + 1)? real parameters. If we interpret the elements
am (h =0,1,---,n) of the matrix A as the homogeneous co-
ordinates of a point a, € P,, the conditions (6.3) give
(6.4) (a@) = Ba,

which show that the points a. are normalized; they form the
vertices of an autoconjugate n-simplex with respect to the quadric
(2z2) = 0. Because a, and a, exp (tax) are the same geometric
point, to determine an element ¥ & U we must give the n + 1
geometric points a, [with the conditions of (6.4)], as well as the
n 4 1 real parameters ox.

The invariant matrix of Maurer-Cartan is

(6.5) w=A"1dA = A*dA,
which satisfies, in consequence of (6.3),
(6.6) w+ ot =0

The invariant pfaffian forms are

6.7) Wik = Ié:o Tn; dawe = (@; dag),

and (6.6) gives
(68) Wik + (:’kj = 0

The kinematic density of U, up to a constant factor, is
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(6'9) du = [H wiije 11 whh]y \7 < kr 0= jl kt h = n,
where the product is exterior.

We have all necessary elements for the study of the integral

geometry of the unitary group. We shall restrict ourselves to the
case n = 2 (complex projective plane).

6.2. Meromorphic curves. A complex analytic mapping E; — P,
of the complex euclidean line E; into the complex projective plane
P, defines a meromorphic curve in the sense of J. Weyl, H. Weyl
(75), and L. Ahlfors (1); it is defined by three analytic functions
zi = 2z(l), (1 =0,1,2). Every such curve I’ has an invariant
integral with respect to U, which we shall call the order of T.
When the homogeneous coordinates z; are normalized such that
the condition (6.1) is satisfied, the order of I' is defined by the
following integral (up to the sign which depends upon the orienta-
tion assumed for I'),

(6.10) J =2 fi e

= om
where i = V' —1 and .
(6.11) Q@ = [dzdz] = dzo A\ dZo + dzy A\ dz1 + dz; A d2s.

If I is an algebraic curve, we shall see that J coincides with its
ordinary order or grad.

If the coordinates z; are not normalized, we set Z; = 2;/(z2)'/%,
and an easy calculation gives

(6.12) Q = [dZ dZ] = E%;l} dt A di,

where z A 2’ denotes the vector with the components 2125 — 221,
226 — 2022, and zp2] — 2,20.

For some purposes, it is convenient to write € in another form.
Let ¢ be a point on the tangent to T at the point z such that

(6.13) () = 1, (€z) = 0.
We will have (since c is on the tangent to T at z),

(6.14) dz = az + Be, dz = az + B¢
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where «, 8 are the pfaffian forms

(6.15) a = (zdz), B = (€ dz).
From (6.13) and (6.14), we deduce
(6.16) Q=[dedzl =aAat+BASB
and because o = —&, we have @« A @ = 0. Therefore,
(6.17) Q=B AB=(Cdz) A (cdz),
a formula which will be useful in the following discussion.
As an application, we shall use (6.17) to obtain the order of a
complex straight line. Since J is invariant by unitary transforma-
tions and any line can be transformed into the axis z; = 0, it

suffices to compute the order in this case. We take, in order to
satisfy (6.1) and (6.13),
2 = (peio(L + 67,0, (1 + 1)),
¢ = (—e*(l + p)7"% 0, p(1 + p*)71%),
and we get
o _Gpt+ipde -~ _ _dp —ipde
(T de) = “T¥. (cdz) = T,
and
©6.18) Q= (@d) A (cds) = —2P_ dp A dp.
(1 + p?)?
The order of the segment ¢ £ p 5,0 £ ¢ < 27 will be
1 b 26 _ b* — a? .
T=5ih b TR T AT
For ¢ = 0, b = =, we obtain J = 1, which is the order of a line.
6.3. A generalization of the theorem of Bezout. Let Ty, T3 be two
meromorphic curves of P. of orders J,, J, respectively. Letul':be
the transform of I'; by w € U. In the theory of meromorphic
curves it is important to determine the difference between the
product J1J; and the number N(T; M uI’2) of points of intersection

of T, and ul', each counted with its proper multiplicity [Ahlfors
(1), Chern (9) and (10), and H. Weyl (75)].
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Our goal is more simple. We wish to obtain the mean value of
N(T: N uly) for all w € U. First, we will compute the integral

(6.19) 1= A N(T: N uly) du

where the element of volume du is given by (6.9). In our case,
n = 2, making use of (6.8), and considering only the absolute
value, we have

(620) du = (ao dal) A (El dao) A ((_lo daz) A ((7/2 dao) A\ (l—il dag)
A (62 dal) AN (ao dao) A (61 dal) N (Ez dag).

Inasmuch as we are only interested in the transformations u
such that Ty M ul: # 0, we may choose the points ag, a1, and a,,
which determine u, so that: g = point of T, M uIle; a1 = point on
the tangent to ul; at ao; @, is then determined by the relations
(6.4), which we now write

(6.21)  (adBo) = (a181) = (azl) = 1, (ae81) = (aoliz) = (@:@) = 0.

Let s be the point in which the line determined by i, a; intersects
the tangent to T'y at . We shall have

(6.22) (s3) = 1, (s@o) = 0, (3ao) = 0.

According to (6.17), the differential form which gives the order of
uI‘z is

(623) Qz = (51 dao) A (al dl_io) = (60 dal) A (61 dao).

Since we always take ao on T, we have da, = aay + 8s, where
a = (G day), B = (5 day). Consequently, we have

(@ dao) = B(T:s), (az ddo) = B(as8),
and, by exterior multiplication,
(6.24) (@:das) A (azday) = (@ day) A (@2 dao)
= (B A B)(@s)(as8) = (a5)(a:®),

~ where @, is the differential form which gives the order of I';.
From (6.20), (6.23), and (6.24), we have

(625) du = Q A 91(628) (a2§) A (@ daz) A (@ dax) A (o dao)
AN (61 dal) N (62 dag).
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We first keep fixed the geometric points ag, a1, and a,. With the nor-
malization (6.21), their homogeneous coordinates ax; (h = 0, 1, 2)
are determined up to an exponential factor exp (ie;); the param-
eters a;(j = 0,1,2) are variables in (6.25). Putting a; = a}
exp ({a;), we have da; = ag do;, (G;da;) = idaj, and, conse-
quently, / @; da;) = 275 (j = 0, 1, 2).

From the right side of (6.25) it remains to evaluate (as being
fixed) / (@25)(a:3) (@ das) A (@ day), where q;, a; describe the line

(@2) = 0 which contains the point s. We can assume, because of
the invariance of the integrand by unitary transformations, that
this line is the axis 2, = 0. According to (6.18), we then have

620 [ @do) A @da) = [ 72 do d, ,

where we have put a; = (peie(l + pz);'1/2, 0, 14 p)"V), a4 =
(—et(l + p%)712,0, p(1 4 p*)~1/%). Takings = (0,0, 1), we obtain

©627) (@s) (@:3) = r;l.—pz

and, therefore,

6.28) [ (@9)(as®)(@ dos) A (@ dar)

= (% 2ip __ .
= ﬁ) j(; T e dpdp = .
From (6.25) and (6.28), we obtain the integral of du extended

over all u such that Iy N ul’; = 0, each u counted N(I'y M wly)
times. We get (up to the sign which is unessential),

(6.29) A N1 N uly) du = 3205775,

where J; and J; are the orders of I'y and Ty, respectively.
To obtain the mean value of N(I'; M ul'z), we need the total
measure of U. Taking for I'y and I'; two straight lines, we know

that J, = J: = 1 and N = 1; therefore (6.29) gives /;1 du = 32x5.
Consequently, the mean value of N is
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For algebraic curves, N is constant and (6.30) gives the classical
theorem of Bezout; therefore our result may be considered a
generalization of this theorem to meromorphic curves. For the
extension to analytic manifolds of P, see (56).

7. INTEGRAL GEOMETRY IN
RIEMANNIAN SPACES

7.1. Geodesics which intersect a fixed surface. The methods of the
integral geometry can be also applied to Riemannian spaces,
mainly to spaces of constant curvature or other spaces which admit
a group of transformations into themselves. The case of surfaces
is simple and well known (55). Here, we want to consider the case
of 3-dimensional spaces. '

Let R; be a 3-dimensional Riemannian space defined by ds* =
gs; dx; dx;, where the summation convention is adopted; 7, j are
summed from 1 to 3. Let us introduce the notations,

7.1) F = Gua), 7= oo

where z; = dz./dt. As we know, a geodesic of R; is determined by
a point z; and a direction zi, which is equivalent to give z;, p:
(z =1, 2, 3). The density for sets of geodesics is defined by the
following exterior differential form, taken always in absolute value:

(7.2) dG = dps A dzo A dps A dxs + dps A dzz A dpy A da
+ dpr A dzi A dpz A dz..

The measure of a set of geodesics is the integral of dG extended
over the set. The density (7.2) is the second power of the differ-

3
" ential invariant 3 dp; A dx;, which constitutes the invariant in-
1

tegral of Poincaré of the dynamics (6, pp. 19 and 78), and it therefore
possesses the following two properties of invariance: (1) it is in-
variant with respect to a change of coordinates in the space;
(2) it is invariant under displacements of the elements (z;, p;) on
the respective geodesic.
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To give a geometrical interpretation of dG, let us consider a fixed
surface 2 and a set of geodesics which intersect £. Let G be such
a geodesic and P its intersection point with Z. In a neighborhood
of P we may assume that the equation of Z is z; = 0 and that the
coordinate system is orthogonal, that is, ds? = gy d2? + go dac? +
gas da3, and thus p; = ¢ii(dz,/ds). If »; represents the cosine of the
angle between G and the z:~coordinate curve at P, we have

Vi
3:8;. Vi dx;..

To determine G according to the second property of invariance
of dG, we may choose its intersection point P with . At this
point we have 23 = 0, dz; = 0, and, consequently, (7.2) takes the
form

(7.4) dG = dp, A dxy A dps A dzy,
or, according to (7.3),
(7.5) dG = Vgugndn A dz, A dve A dz,.

On the other hand, to each set of direction cosines #, v;, and »; cor-
responds a point of the unit euclidean sphere and the area element
in it has the value (3.15)

(7.3) v»i= \/!_];(d;?’ Di = Vi, dpi= Vgidv;+

_ dV1 /\ d!lﬂz.

V3

(7.6) do

Hence, we have, in absolute value,
7.7 dG = |cos ¢| do A df,

where ¢ is the angle between the tangent to G and the normal to =
at P, and df = V| m dz, A dz, is the element of area T at P.

Integrating over all geodesics which intersect =, on the left side
each geodesic is counted a number of times equal to the number n
of intersection points of G and Z; on the right, the integral of
|cos ¢| do gives one-half the projection of the unit sphere upon a
diametral plane (= 7). Consequently. we get the integral formula

(7.8) / ndG = =F,
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where F is the area of 2. This formula generalizes (3.28) to Rie-
mannian spaces.

7.2. Sets of geodesic segments. Let ¢ be the arc length on the
geodesic G. From (7.7) we deduce

(7.9) dG A dt = |cos ¢| do A df A dt.

The product |cos ¢| dt equals the projection of the arc element dt
upon the normal to Z at P; consequently, [cos ¢| df A dt equals
the element of volume dP of the space at P, and (7.9) can be
written in the form,

(7.10) dG A dt = dP A do.

An oriented segment S of geodesic is determined either by G,
t (@ = geodesic which contains S; { = abscissa on @ of the origin
of S) or by P (= origin of S) and the point of the unit euclidean
sphere which gives the direction of S. The two equivalent forms
(7.10) may therefore be taken as density for sets of segments of
geodesic lines.

For example, let us consider the set of oriented segments S with
the origin inside a fixed domain D. The integral of the left of (7.10)

gives 2 / M d@, where A denotes the length of the are of @ which

lies inside D (the factor 2 appears as a consequence that dG@ means
the density for non-oriented geodesic lines). The integral of the
right is equal to 47V, where V is the volume of D. Consequently,
we have the following integral formula

(7.11) j N dG = 2V,

where the integral is extended over all geodesics which intersect D.

7.3. Some integral formulas for convex bodies in spaces of constant
curvature. Let R; now be a 3-dimensional space of constant curva-
ture k. With respect to a system of geodesic polar coordinates,
it is known that the element of length can be written in the form

sin? \/Ep
k

where p denotes the geodesic distance from a fixed point (origin

(7.12) ds® = dp* + dr,
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of coordinates) and dr represents the length element of the
2-dimensional unit euclidean sphere. The volume element has the
form

. 2 o
(7.13) dP = §1le1’££ dp A do,

where do denotes the element of area on the unit sphere. .
Let P,, P, be two points in R; such that there is only one
geodesic G which unites them. Let p;, p2 be the abscissas on G of
P; and P;. With respect to a system of geodesic polar coordinates
with the origin at P,, the element of volume dP; has the form
sin? V& |pa

k-

(7.14) dP, = — ol dps A do.

By exterior multiplication by dP;, we have, in consequence of
(7.10),

sin? '\/E I p2 —
k

(7.15) AP, A dP; = o doy A dpe A dG.

This formula is the work of Haimovici (27).

Let D be a convex domain of volume V (that is, it contains,
with each pair of its points, the arc of geodesic, assumed unique,
determined by them) and consider all the pairs P,, P, inside D.
The integral of the left side of (7.15) is equal to V2. If X\ denotes
the length of the arc of G which lies inside D, then by calculating
the integral of the right side we have

PN - 1 1. -
A /(; sin? \/k lpz hand PII dp1 dpz = § <)\2 - E sin? \/kk)

Hence, we have the integral formula
1 2 _ Lo /k = o2
(7.16) :f (x T sin \/Ic)\) dG = 21,

where the integral is extended over all geodesics which intersect D.
For the elliptic space (¢ = 1), this formula reduces to

(7.17) [ (\* — sin? \) dG = 2V,
and for the hyperbolic space (k = —1),
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(7.18) : j (sinh®\ — \?) dG = 2V2.

For the euclidean space (k = 0), passing to the limit for k — 0
in (7.16) we get

~(7.19) j MdG = 6V,

which is a formula of Herglotz [Blaschke (3)].

Formulas of this kind referring to convex figures in the plane or
to convex bodies in the euclidean space were first obtained by
Crofton (7), considered the creator of the integral geometry. A
great deal of them were given successively by several authors:
Lebesgue (34), Blaschke (3), Massoti Biggiogero (38—42). Paper
(38) contains an extensive bibliography.

The generalization to spaces of constant curvature is less known.
However for certain types of formulas, the treatment in elliptic
space is more satisfactory than that in euclidean space, owing to
the possibility of dualization. Let us consider the following ex-
amples. _

In the elliptic 3-dimensional space, all geodesics are closed and
have the finite length =. The planes have finite area 27. Since any
geodesic intersects a fixed plane in one and only one point, the
formula (7.8) gives the measure of the set of all geodesics of the
space:

(7.20) [ dG = 272

Let D be a convex body of area F and volume V and let us con-
sider the set of geodesic segments of length = which intersect D.
The integral on the left of (7.10) extended over this set making
use of (7.8) for n = 2, has the value

(7.21) [aGd == [d¢=2F,

and the integral on the right is
(7.22) [ dP A do = 22V + j & dp,
-3))
where ® denotes the solid angle under which D is seen from P
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(P exterior to D). From (7.21) and (7.22), we deduce the integral
formula
(7.23) [ 2dP = 3=F — 21V,
PED

Let us now see which formula corresponds to (7.11) by duality.
Let M, F be the integral of mean curvature and the area of the
boundary of D. For the dual convex body D* it is known that we
have

(724) F*=4r —F, M* =M, V¥=n-M-—-V.

By duality to each straight line (geodesic) G corresponds another
straight line G* and, hence, if we use (7.24), formula (7.11) gives

(r — ¢*) dG* = 27 (x> — M* — V*),
e*ND*=0
where ¢* denotes the angle between the two supporting planes of
D¥* through G* and the integral is extended over all-geodesics G*
exterior to D*. Taking into account (7.20) and (7.8), and replacing
G* by G, we get the integral formula

(7.25) | eDG=2r(M + V) — 3=°F,
GND=0
which has no analogue in the euclidean geometry.
Similarly, as dual of the formula (7.17), we have

(726 [ (¢ —sin?¢) dG = 2(M + V) — }a7F,
GND=0 .
‘where, as in (7.25), ¢ denotes the angle between the two supporting
planes of D through G and the integral is extended over all geo-
desics which do not intersect D. For the integral geometry in
spaces of constant curvature, see Petkantschin (48), and (53),
(54), and (59).

8. SUPPLEMENTARY REMARKS AND
BIBLIOGRAPHICAL NOTES

8.1. General 'L'ntegrdl geometry. The integral geometry has its
origin in the theory of geometrical probabilities [Crofton (13),
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Deltheil (14), and Herglotz (29), and it was widely developed by
Blaschke and his school in a series of papers quoted in Reference
(3). The inclusion of the methods and results of the integral
geometry within the framework of the theory of homogeneous
spaces (as we have done in Section 2) is the work of Weil (73) and
(74), and Chern (7). After their work, the measure theory in
groups and homogeneous spaces became of fundamental interest
in integral geometry. Every new result in that direction can be
applied and probably exploited with success to get integral geo-
metric statements; at least, it is sure that the integral geometry
constitutes the most abundant source of examples [Nachbin (44)
and Helgason (28, Chap. X)].

The inverse problem of finding a general formulatlon of certain
particular formulas of integral geometry (Crofton’s formulas) is
also an interesting one [Hermann (30) Legrady (36)]. A very
simple example follows. We have seen that the kinematic density
for the group of motions M of the plane is dK = dP A da (1.11).
From the point of view of the homogeneous spaces, dP is the
density of the space /M, where I, denotes the group of rota-
tions about a fixed point and da is the density of IM,. If we write,
symbolically, dK = dIt, dP = d(/M,), da = dI,, the formula
(1.11) gives dM = d(D/M) A dI, which induces us to ask if it
will hold for a general group ® and its subgroup g. In this particu-
lar example, it is well known that the formula d® = d(®/g) A dg,
in fact, holds for any locally compact topological group ® and any
closed subgroup g of & [Weil (73, pp. 42-45) and Ambrose (2)].

8.2. Sets of manifolds. Some problems of integral geometry may
also be presented under the following form. Let V denote a dif-
ferentiable manifold and F a family of submanifolds in it. First
we ask for the existence of a transformation group ® of V onto
itself which transforms the elements of F onto elements of F.
Then, if such a group exists, we ask for a measure of sets of
varieties of F invariant under ®. We shall give two simple ex-
amples.

Examples
1. Let V-be the euclidean plane E; and F the family of all
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circles of it. The group ® is known to be the group of similitudes
(8.1) ' = p(xcose — ysing) + a,

Y = p(zsin ¢ + y cos ¢) + b,

which depends on the 4 parameters a, b, p, and ¢. This group can
be represented by the group of matrices,

pcose —psing a
u=|psing pcose b,
0 0 1

and by the method of Section (2.2), we find immediately that the
forms of Maurer-Cartan are

dp cos ¢

sin
» w=dp,  w = da + —* db,
p p p

wp =

0 = sing . +cos(pdb.
: P p
The similitudes which leave invariant a given circle are charac-
terized by a, b, p = constants, and, consequently, the system (2.3)
isw = 0, w3 = 0, w; = 0. The density for sets of circles (of center
@, b and radius p) invariant under the group of similitudes results:
_ da A db A dp
e
2. Let V be the real projective plane and F the family of non-
degenerate conics in it. Then the group G is the projective group
and the density for conics is (61),

_ daw A dan A daep A dau A dax
34?2

where A = det (a,;) and the equation of the conic is assumed to be
aonxs + 2anry + any® + 2a0r + 2a1y + 1 = 0.

Other examples of this kind have been given by Stoka (63-68).
For sets of degenerate conics, see Luccioni (37).

dac

dC

8.3. Integral geometry of special groups. The metric (euclidean
and noneuclidean) integral geometry is the best known; however,
other cases have also been investigated. The integral geometry
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of the unimodular affine group of the euclidean space onto itself
leads to certain affine invariants for convex bodies (62). The in-
tegral geometry of the projective group has been considered by
Varga (70) and is pursued in (55) ; that of the symplectic group has
been studied by Legrady (35).

In the last years, Gelfand and his school have largely generalized
the ideas of the integral geometry and used them in problems of
group representation (21). '
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