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INTEGRAL GEOMETRY 

L. A. Santalo 

1. INTKODUCTION 

We shall begin with three simple examples which will show the 
bàsic ideas on which integral geometry has been developed. 

1.1. Sets of points. Let X be a set of points in the euclidean 
plane E^. The measure (ordinary àrea) of X is defined by the 
integral 

(1.1) m(X) = j^dx dy. 

Let SO? be the group of motions in E^. With respect to an or-
thogonal Cartesian system of coordinates, the equations of a 
motion M G 9)í are 

(1.2) 
x' = X cos >p — y sin <(>-{• a 

y' = xún ip -\- y cos ^ + 6. 

The fundamental property of the measure (1.1) is that of being 
147 
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(1.3) MX') = ¿ , dx' d̂ ' = ¿ dx dy = ^^x) 

as follows immediately from (1.2). I t is well known that this prop-
perty characterizes the measure (1.1) up to a constant factor. 

Because we are generally interested only in the differential form 
under the integral sign in (1.1), we shall write dP = dxdy, or, 
more precisely, 

(1.4) dP = dx A dy 

to indicate that the differential form under a múltiple integral sign 
is an exterior differential form [see, for example, Munroe (43)]. 

The exterior differential form (1.4) is called the density for 
points in Ei with respect to 9J?. We shall always taka the densities 
in absolute value. 

1.2. Sets of Unes. Let X now be a set of lines in Ei—for example, 
the set of all lines G which intersect a given convex domain K. We 
ask for a measure of X invariant under iDï. 

Let p be the distance from the origin 0 to G and 6 the angle 
formed by the perpendicular to G through 0 and the x-axis. We 
maintain that this invariant measure is given by 

(1.5) m(X) = f^dp de. 

For a proof, we observe that by the motion u [Relation (1.2)] 
the line coordinates p, 6 transform according to 

(1.6) d' = e + <p, p' = p + acos(d + <p) +bsm(d + <p) 
and putting X' = uX, we have 

m(X') = j ^ , dp' de' = fdpde = m(X) 

which proves the invariance of m(X). That this measure is unique, 

up to a constant factor, follows from the transitivity of the lines 

under SW, since if / f{p, e) dp dd is invariant we must have 

Lfip',6')dp'de'= íf(p,e)dpde, and, on the other hand, 
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according to{l.6), I^J(p',e')dp'dd' = J^f(p',d')dp d0. Fromthe 

last two equalities, we obtain / f(p', 6') dp dd = j f(p, 6) dp dd. 

If this equality holds for any set X it must be true that /(p ' , B') = 
/(p, 6), and, since any line G{p, 6) can be transformed into any 
other G(p', d') by a motion, we deduce f{p, d) = constant. 

The differential form 

(1.7) dG = dp A dd, 

taken in absolute value, is called the density for lines in E^ with 
respect to SDï. 

Let us consider a simple application. To gat the measure of the 
set of lines which cut a íixed segment S of length I, because of the 
invariance under SOÍ we may take the origin of coordinates coinci­
dent with the middle point of S and the z-axis coincident with the 
direction of S; then we have 

(1.8) m(G;G nS9^0) = J dp dd = j^'l^ cos 6 
Gns?íO 

dQ = 21. 

If instead of S we consider a polygonal Hne r composed of a 
finite number of segments >S, of lengths Z„ writing (1.8) for each 
Si and summing we get 

(1.9) /„ dG = 2L 

where n = n(G) is the number of points in which G{p, 9) cuts r 
and L is the length of r . The integral in (1.9) is extended over 
all lines of the plane, n being 0 ii G HT = 0. B y a limit process 
it is not diíBcult to prové that (1.9) holds for any rectifiable curve 
[Blaschke (3)]. 

Conversely, given a continuum of points r in the plane, if the 
integral on the left of (1.9) has a meaning, then it can be taken 
as a definition for the length of F, which is the so-called Favard 
length [Nòbeling (45)]. 

For a convex curve K we have n = 2 for all G which intersect K, 
except for the positions in which G is a supporting line of K, 
which are of zero measure. Consequently we have: The measure 

H' 
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of the set of Unes which intersect a convex curve is equal to its 
length. 

1.3. Kinematic density. Let us now consider a set X of oriented 
congruent segments S of length I—for example, the set of those 
which intersect a fixed convex domain. The position of S in E2 
is determined by the coordinates of its origin P{x, y) and the 
angle a formed by S and the x-axis. If we want to define a measure 
for X invariant under W, we must take 

(1.10) in{X) = I dxdy da. 

To see this, we first observe that by a motion (1.2) the variables 
(x, y, a) transform according to (1.2) and a! = a -\- ip. Conse-
quently the Jacobian of the transformation is 1, and we ha ve 

m{X') = f dx' dy' da' = fdxdyda = mÇX) 

where X' = uX, which proves the invariance of in{X). The 
uniqueness, up to a constant factor, follows from the transitivity 
of W. with respect to the congruent segments of the plane by the 
same argument previously given for the lines. 

If instead of segments we want to measure sets of congruent 
figures K, since the position of such a figure is determined by the 
position of a point P{x, y) rigidly bound to K and the angle a 
between a fixed direction PA in K and the x-axis, we can take 
the same integral (1.10). The differential form 

(1.11) dK = dx A dy A da 

is called the kinematic density for E2 with respect to the group 9JÍ. 
I t is always taken in absolute value. 

Another form for dK is obtained if instead of the coordinates 
(x, y, a) for the oriented segment S, we take the coordinates 
(p, d) of the line G which contains S and the distance i — HP 
from P to the foot H of the perpendicular drawn from the origin 0 
to G. The transformation formulas are 

(1.12) p cos Q -\- túnd, y = psind — t cos d, a = d — -^ 
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and consequently, up to the sign, we have dx A dy A da = 
dp A dd A dt. We may then write 

(1.13) dK = dG A dt 

where we write G in order to indícate that G must be considered as 

oriented {dG = 2 dG). 
From this expression for dK we easily deduce the measure of 

the set of segments of length I which intersect a given convex 
domain K of area F and perimeter L. In fact, calling X the length 
of the chord determined by G on K, we have 

m (S; S n K 9^ 0) = 2 j dp dd dt = 2 j (\ + 1) dp , 

= 27rF + 21L, snx ?ío 

mi 

This formula can be generalized to surfaces [see (55)]; an appli-
cation was given by Green (22). 

If we ask for the measure of the set of segments S which are 
contained in K, the result is not simple; it depends largely on K. 
For instance, for a circle C of diameter D ^ I, we have 

i(<S; 5 C C) = I (irD^ - 2Z)2 are sin ^ - 21VD^ - A 

and for a rectangle R of sides a, ò (a ^ Z, 6 ^ Z), we have 

m{S; SCR) = 2(ira6 - 2(a + h)l + Ẑ ). 

An unsolved problem is that of finding among all convex 
domains K with a given perimeter those which maximize the 
measure m{S; S Q. K) of the segments of a given length which 
are contained in K. For I = O the problem is the classical iso-
perimetric problem and the solution is well-known to be the circle. 

The preceding very simple examples show the three steps which 
constitute the so-called integral geometry in the original sense of 
Blaschke (3): (1) definition of a measure for sets of geomètric 
objects with certain properties of invariance; (2) evaluation of 
this measure for some particular sets; and (3) application of the 
obtained result to get some statements of geometrical interest. 

The same examples show the basic elements which are necessary 
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to build the integral geometry from a general point of view: 
(1) a base space E in which the objects we consider are imbedded 
(in the preceding examples, E was the euclidean plane Ei); (2) a 
group of transformations ® operating on E (in the preceding 
examples ® was ÜJÏ; (3) geomètric objects F contained in E which 
transform transitively by ® (in the preceding examples, the geo­
mètric objects were. points, lines or congruent figures). 

Given E, ®, and F, the first problem of the integral geometry 
is to find a measure for sets of F invariant under ®. 

2. GENERAL INTEGRAL GEOMETRY 

2.1. Density and measure for groups of matrices. Though the 
integral geometry deals with general Lie groups, from the geo-
metrical point of view in which we are principally interested it 
suíRces to consider Lie groups which admit a faithful representa-
tion, that is, which are isomorphic to a matrix group. We need 
some facts about groups of matrices, which we shall compile in 
this section. For a more general treatment, see Chevalley (12). 

Let ® be a group of n X n matrices of dimensión r, that is, 
each matrix w G ® depends on r independent parameters ai, 
ai, • • •, Or; more precisely, each matrix M G ® is determined by a 
point a = (tti, ai, • • •, a,) of a difierentiable manifold of dimensión 
r, which we shall denote by the same letter ®; oi, 02, • • •, a, are then 
the coordinates of a in a suitable local coordínate system. 

Let e G ® be the unit matrix and u~^ the inverse of M G ®- If 
du denotes the differential of the matrix u, the equation 

(2.1) M-I(M + du) -= e + o} 

defines a matrix ca = w~' du of linear (pfaífian) differential forms 
which is called the matrix of Maurer-Cartan of ®. The elements 
co,7 of to have the form co,> = am dax + • • • + a.yr da,, where the 
coeíficients a,-,* are analytic functions of oi, 02, • • •, â . From these 
n^ pfaífian forms un there are r linearly independent (base of the 
vector space dual of the tangent space of ®) which we shall de­
note by wi, C02, • • •, "rj they are called the forms of Maurer-Cartan 
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of & and are defined up to a linear combination with constant 
coefRcients. 

The fundamental property of the matrix u is that of being left 
invariant under ®. For if u' = SM (S is a fixed element of ®), we 
have du' = s du, and therefore w' = u'~^ du' = u-^ s~' s du = 
vr^ du = 03. 

As a consequence, the r forms of Maurer-Cartan are also left 
invariant under ®, and this fact characterizes these forms up to a 
linear combination with constant coeíficients. For a proof, we 
observe that since the forms of Maurer-Cartan coi, • • •, Ur are in­
dependent, each pfaffian form ü may be written Í2(a, da) = 
Sí Ai{a)ü}i. If ü is left invariant under ®, we have 

ü' = 2Í A{ia')wi = Sí Aiia)m 

and since wí = u,-, we have 

Sí iAi{a') - A,ia))m = 0. 

Because of the independence of w,-, it foUows that A,(a') = Ai(a), 
which implies Ai = constant. (Since we are interested only in the 
left invariance, we shall hereafter speak simply of invariance, 
understanding that it means left invariance.) 
Notice that by exterior differentiation of to = M~"' du, taking 

into account that du~^ = — M~' du u~^, we get 

(2.2) dü) = —u~^ du w~' A du = —co A co. 

This matric equation includes the expression of the exterior 
differentials dwi oí the forms of Maurer-Cartan as linear combina-
tions with constant coeíficients of the products wy A oik] these 
expressions are called the equations of structure of Maurer-Cartan 
for the group ®. 

2.2. Density and measure in homogeneous spaces. Let § be a 
subgroup of ® of dimensión r — h. Suppose that § itself is a 
Lie group isomorphic to a matrix group. We want to find the 
conditions for the existence of a density (that is, an element of 
volume) in the homogeneous space ® / ^ (= set of left cosets sf), 
5 G ®) invariant under &. For this purpose, we notice that the 
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submanifold § of the differentiable manifold ® and its left cosets 
s § (s G ®) are the integral manifolds of a pfaffian system. 

(2.3) wi = 0, W2 = 0, •••, wh = 0. 

Because § and its left cosets as a whole are invariant under ®, 
the left side members of (2.3) will be linear combinations with 
constant coefficients of the forms of Maurer-Cartan of ®, and, 
because these forms are defined up to a linear combination with 
constant coefRcients, we may assume that they are the h first 
forms of Maurer-Cartan of ®. 

Because oi, is invariant under ®, the differential form 

( 2 .4 ) O/i = coi A 0)2 A • • • A COA 

will be also invariant under ®. However, O* is not always a density 
for ® / § because its valué can change when the points a ^& 
displace on the manifolds s § . We shall now prove the foUowing 
theorem. 

THEOREM: A necessary and suficient condition for íli, to be a 
density for ® / § is that its exterior differential vanish, that is, 

(2.5) dük = 0. 

Proof: To prove this theorem, we observe that the submanifold 
§ and its left cosets fiU up the manifold ® in such a way that for 
each point of ® passes one and only one submanifold. Thus, the 
system (2.3) is completely integrable and it is consequently equiv­
alent to a system of the form 

(2.6) dfi = 0, d^2 = 0, •••, da = 0, 

where ^, = ^i(ai, a^, • • •, a,) are functions of ai such that the mani­
folds s § are represented by ^, = constant (i = 1, 2, • • •, h). We 
can make in ® the change of local coordinates (ai, ai, • • •, ar) 
—* (?i, ?2, • • •, f/i, Xh+i, • • •, Xr). Since thesystems (2.3) and (2.6) are 
equivalent, we have 

(2.7) OA = A{^, x) d^i Ad^2 A ••• A d^^, 

where A (̂ , x) denotes a function of íi, • • •, ,̂„ x^+i, • • • ,Xr. When 
the point a(^i, ¿2, • • •, ?A, a:/,+i, • • • ,Xr) varies on s § , the coordinates 
^i are constant, and, therefore, 



INTEGRAL GEOMETRY 155 

dA 
(2.8) 50A = S r - dXj Ad^i A ••• A d^K. 

On the other side, by exterior differentiation of (2.7), we get 
h Qá 

dfi» = 2 TT d^i Ad^iA ••• Ad^K 
3 = 1 " Í J 

dA 
+ S P dxj A d^i A 

y=A+lOXj 
A dh = SOA, 

because the first sum vanishes. Consequently, so that 6Qh = O— 
that is, for fi^ to be invariant by displacements on the manifolds 
s^, it is necessary and sufficient that düi¡ = 0. This proves the 
theorem. 

If § reduces to the identity, then ® / § = ® and fi, = wi A 
0)2 A • • • A co, gives the invariant density (= element of volume) 
of ®, which in integral geometry takes the ñame of kinematic 
density of ®. The integral of fir gives an invariant measure for ® 
(Haar's measure) which is unique up to a constant factor. 

2.3. The examples of the introduction. To exemplify these gen­
eral results, we shall consider the examples appearing in the 
introduction. 

The group of motions ® = 9)ï in £'2 can be represented by the 
group of 3-dimensional matrices, 

(2.9) tcos íp — sm ^ 
sin <p eos (p 

O O 

with the parameters ai = a, 02 = h, as = <p. We have 

— Ò sin ^ — a eos (p\ 
— b eos <p + asm (p 

1 J 

( —sin (pd<p — eos <pd(p da\ 
eos <p d(p —sin <pd<(> db\ 

O 0 0 / 

and, therefore, 
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'0 
d<p 

.0 

—d(p 
0 
0 

eos (pda + sin ¡p dh 
—sin <pda -\- eos ¡p db 

0 
u =• u~^ du = 

The forms of Maurer-Cartan are 

(2.10) 
wi = eos <pda -{- sin <p db, oa = —sin ipda-\- eos (p db, 

and the equations of structure 

£03 = d<p, 

dci) —O) A w = 

That is, 

(2.11) dcoi = —£02 A Ol3, du>i = —£03 A COi, £¿£03 = 0 . 

The kinematie density of W is 

dK = (ci A 012 A 033 = da A db A d<p, 

which, up to the notation, coincides with (1.11). 
Let $1 be the subgroup of 3K consisting of all motions which 

lea ve the line G(p, 6) invariant (equation olG'.x eos 6 -{• y únd — 
p = 0). There is a bijective mapping between the lines G oí E^ 
and the points of the space W/^i. As density for lines, we take 
the density of SK/^i. 

By the change of coordinates (a, b, <p) —> (p, 6, t) in 9J?, given by 
the equations, 

p eos 6 -{• t ún6, b = púnB — t eos 6, e -

p = a eos 0 + 6 sin 0, t = a únd — b eos B, = ̂  + 
the points of SW/^i are p = constant, 6 = constant. The system 
(2.6) is dp = 0,de = O, and the system. (2.3) is 

dp — eos 6 da + sin d db = —sin <pda + eos <p db = 012 = O, 

dd = d(p = 033 = 0 . 

Therefore, the density for lines takes the form 

(2.12) (¿G = £02 A £03 = —sin <pda A d<p -\- eos ¡pdb A d<p 
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which is equivalent to 

(2.13) dG = dp A de, 

as stated in (1.7). 
If ^0 is the subgroup of SW consisting of all motions which leave 

the point P{a, b) invariant, there is a bijective mapping between 
the points (a, b) of E2 and the points of the homogeneous space 
íffl/éo- The system (2.6) is now da = O, db = O, and (2.3) gives 
o¡i = O, 0)2 = 0. The density (2.4) for points results in 

(2.14) dP = wi A 012 = da A db, 

which coincides with (1.4). In both cases (2.13) and (2.14), the 
condition (2.5) is obviously satisfied. 

To give an example in which the homogeneous space ® / § has 
not an invariant density, let us consider the 4-dimensional group 
® of matrices of the form 

f ai O aA 
O «3 «4 1, aiüz 9^ O, 
0 0 1 / 

and the 2-dimensional subgroup § of matrices of the form 

Mi = 

/ai O 0\ 
(o a, 0), 
\0 O 1/ 

Oías 5^ 0 . 

To obtain the forms of Maurer-Cartan of ®, we have 

£0 = M~' du = 

ax^ 0 
0 ai"* 
0 0 

Wl 0 £02^ 

0 0)3 0)4 

,0 0 0 ; 

—oi 'a2\ 
— ai"'041 

i 

\ 

lda\ 

lo 
0 
daz 
0 

dai 
dai 
0 

where 

COI = a\ dtti, 0)2 = cii ^ da2, C03 = 03 ' das CO4 = 03 ' (ÍO4. 

The subgroup ^ is characterized by 02 = O, «4 = O, and, there-
fore, the system (2.3) is now Ü>2 = O, C04 = 0. The differential form 
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fi2 = W2 A £04 is not a density, because dü^ = —«i A 0)2 A W4 — 
W3 A Í02 A Í04 5̂  0. 

3. INTEGRAL GEOMETRY IN THE 
THREE-DIMENSIONAL EUCLIDEAN SPACE 

3.1. The group of motions in E3. We shall consider in detail the 
integral geometry of the 3-dimensional euclidean space; The base 
space is E3 and the group ® is the group of motions SW in it. 

Let X represent the one-column matrix formed by the orthogonal 
coordinates xi, x^, X3 of a point P. The matrix equation of a mo-
tion X —»x' is 

(3.1) 

where 

(3.2) 

Ax + B, 

(au ai2 aiz\ 
üïl «22 fl23 

^031 a32 033^ 

B = 

and A satisfies the conditions of orthogonaHty 

(3.3) ,A' = A-^ ( 4 ' = transposed of A). 

The condition (3.3) reduces to 3 the number of independent 
parameters a.y which, with bi, b^, and Ò3, are the 6 parameters on 
which Tl depends. 

The group 9Jí can be represented by the 4 X 4 matrices, 

(3.4) 

with the ordinary rules, 

5> 

A, AiBi + Bi^ M - i -4->5^ 

M2W1 = 
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The matrix of Maurer-Cartan is 

/ 4 -> dA : 4 -1 d5> 

co = u~^ dw = I .' 

\ O ; O 

If we introduce the two matrices 

(3.5) COA = 4 - 1 dA, coB = A - ^ dB 

of order 3 X 3 and 3 X 1 , respectively, the equations of structure 
can be written 

(3.6) doiA = —UA A UA, doiB = —<^A A (^B-

Since 3)? is a 6-parameter group, we must have 6 pfaflBan forms 
of Maurer-Cartan. Effectively, from (3.3) and (3.5) we deduce 
03 A = A' d A = —dA' A = —tí A, and the 6 forms are the elements 
of the matrices, 

/ 0 C0l2 Wl3\ 

0)^ = 1 —0)12 0 £023 1' 
\ —0)13 ~0)23 CO33/ 

which, expHcitly, give 
3 

(3.7) Uih = —o>hi = S aji dajh, 
3 = 1 

0), 

/ o ) i \ 

0)B = 1 0)2 ]> 

\ooz/ 

3 
= 2 ciji dhj 

I t is useful to give a more geometrical approach to the pfaffian 
forms co,A and on. Let us consider in Ez a fixed frame (Qo; e?, el, el) 
composed of a point Qo and three orthogonal unit vectors e?, and 
a moving frame {Q; ei, e^, £3) which results from the fixed frame 
by the motion u represented by (3.1). If we introduce the matrices 

(3.8) 

we can write 

(3.9) 

and, therefore, 

(3.10) 

e" = (e?, 62, el), e = (ei, 62, 63) 

Q = e'B, 

dQ = eOdB = 

de = e» dA 

1 = eOA, 

e A~^ dB = euB, 

e A~^ dA = eoiA, 
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; = 1 

These formulas are useful for the computation of densities, as 
we shall see in the next section. Because of the orthogonality of 
the unit vectors e„ we have e,€y = 5i„ and from (3.11) we deduce 

(3.12) Uj = CjdQ, uji = Cj dei, 

which are the vectorial form of the equations in (3.7). 

3.2. The área element of the unit sphere. We need to remember 
two expressions for the element of área of the unit sphere. Let v 
be the unit vector with the components 

(3.13) I'l = sin d cos <p, Vi = sin 6 sin <p, vz = eos 9 

where d, <p are the ordinary spherical coordinates corresponding to 
the endpoint of v. The área element at this endpoint is known 
to be 

(3.14) d(T = (I- ve v^) de A d<p = sin 6 dd A d<f> 

where (v ve v^) denotes the scalar triple product of the vectors 
V, ve, and v^ (subscripts denote partial derivation)., Taking (3.13) 
into account, we have also 

(3.15) da = 
dv2 A dví dv} A dvi dvi A dvi 

Vi Vi Vs 

and since ví + V2 + vi = 1, we deduce 

da = Vi dvi A dv3 + V2 dv3 A dvi + vz dvi A dvi. 

On the other hand, if ei, ej, and 63 are the 3 orthogonal unii 
vectors of a moving frame, we have 

ei dea A 62 des = 1̂(639 dd + 63̂  d(p) A e^ie^ dd + 63̂  dtp) 

= (eiCse-ezesv — eie3«>-62639) dB A d<p 

= (ei A ei) • {ese A 63̂ ) dd A dtp 

= (esessesyj) dd A d<f> = da 

where da denotes the área element of the unit sphere correspond 
ing to the endpoint of 63. From (3.12) and (3.16), we get 

(3.16) 
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( 3 . 1 7 ) d<T = C0i3 A <023. 

We have now at our disposal all elements necessary to find the 
densities for points, lines and planes of E3 invariant under 50?. 

3.3. Density for points. Let §0 be the set of motions which 
leave the point Qibi, òj, 63) invariant; clearly it is a subgroup of 
3)Z. According to (3.11), to keep Q fixed we must have 

0)1 = 0 , 0)2 = 0 , ÍO3 = 0 , 

which is the system (2.3), and, according to (2.4), the density 
for points will be wi A wj A ws = dbi A dbt A dbs [applying (3.7) 
and taking into account the determinant |a,j| = 1, because the 
matrixA = (a<í) isorthogonal]. In general, for the point P(a;, y, s), 
we shall have 

(3.18) dP = dx Ady A dz. 

The condition (2.5) is obviously satisfied. 

3.4. Density for planes. Let §2 be the set of motions which 
leave the plane E{ei, 62) invariant; clearly it is a subgroup of SW. 

By the motions of §2 the unit vector a remains fixed and the 
point Q can only move on the plane Ci, e^; therefore, according to 
(3.11), the pfafEan system which characterizes the planes is 

0)3 = 0 , 0)13 = 0 , 0)23 = 0 , 

and the density for planes results: 

(3.19) dE = 0)3 A 0)13 A 0!23. 

If d, <p are the spherical coordinates of the endpoint of 63, (3.14) 
and (3.17) give 

(3.20) £013 A 0)23 = da = s i n d dd A dtp. 

If p is the distance from the origin Qo of the fixed frame to the 
plane E, and au = sin 6 cos >p, 023 = sin d sin <p, aa = cos 6 are 
the components of 63 (normal to E), we have p = a^bi + 02362 + 
03363, and, according to (3.7), 

(3.21) 0)3 S ajz dbj = dp + Rd6 + S d<p. 
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Here, R, S are functions of d, <p, hi, the explícit form of which has 
no interest for us. From (3.19) and (3.20) we get 

(3.22) dE = sinedp A de A d<p = dp A da. 

The condition (2.5) is obviously satisfied, and henee we have: 
If a plañe E is determined by its normal e^ and its distance p to a 
fixed origin, the density is given by (3.22), where da denotes the 
àrea element of the unit sphere corresponding to the endpoint 
of the unit vector 63. 

As an exercise, prové that if the plane is given by the equation 
ux + vy + wz + 1 = 0, its density takes the form 

, „ _ du A dv A dw 
~ (u^ + v^ + wY 

Example 

Let íS be a fixed segment of length 1. To compute the measure 
of the set of planes E which intersect <Sí, we take S on the eS-axis and 
the middle point of S as the origin of coordinates. Then we have 

(3.23) m(E; E D S ^ 0) = f dE 

I 
= ó Jo" '^'^ Jo l̂ *'̂  e\siaede = iri. 

If r is a polygonal line of length L, writing (3.23) for all sides 
of r and adding, we obtain 

(3.24) í ndE = TTL, 

where n denotes the number of intersection points of E with r . 
By a limit process it is not diíficult to prové that (3.24) holds for 
any rectifiable curve. The integral in (3.24) is extended over all 
planes of Ez, n being 0 for the planes which do not intersect r . 

3.5. Density for straight Unes. Let §1 be the set of motions 
leaving the line G which contains the unit vector 63 invariant; 
clearly ^ i is a subgroup of SDï. 

By a motion of ^ 1 , the point Q can only move in the direction 
of 63, and, therefore, (3.11) gives coi = 0, OH = 0. Moreover, be-



INTEGRAL GEOMETBT 

cause es is fixed, from (3.11) we deduce mz — O, 023 = 0. 
pfaffian system (2.3) for the lines of E^ becomes 

163 
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(3.25) wi = 0, £02 = O, 

and the density for lines is 

W13 = 0 , 0)23 = O, 

(3.26) dG = OJl A Ui A £013 A £023-

According to (3.12), £oi A £02 equals the área element of the 
plañe (ei, 62) at the point Q, and we have sean that £013 A C023 is 
the área element of the unit sphere corresponding to the endpoint 
of 63, that is, to the direction of G. If G is determined by its direc-
tion 63 and its intersection point (x, y) with a fixed plañe, denoting 
by yp the angle between «3 and the normal to the fixed plana, we 
have £01 A £02 = |cos \p\ dx A dy, and we can write (3.26) in the 
form 

(3.27) dG = |cos ^1 dx A dy A da: 

From (3.26) and (3.6) it is easy to show that the condition (2.5) 
is satisfied. 

As an exercise, prove that if G is given by the equations x = 
az + p, y = bz -{- q, then its density is 

dG 
da A db A dp A dq 

(1 + â  + 62)2 
Example 

Let S be a fixed surface of class C (= with a continuous tangent 
plañe). If P denotes a point of the intersection G O 2 and df 
denotes the área element of 2 at P, the density for lines can be 
written dG = |cos i/\ df A da, where ^ denotes the angle between 
G and the normal to 2 at P . Fixed P, the integral of |cos ^| do-
extended over all the lines which pass through P, gives the projec-
tion of one-half the unit sphere upon a diametral plañe—that is, T. 
The integration of df over the whole S gives the área F of 2. There-
fore, taking into account that each line has been counted as many 
times n as it has intersection points with S, we get 

(3.28) I ndG = TTF, 
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where the integral is extended over all Unes of Ez, n being O for 
the lines which do not intersect 2. 

3.6. Kinematic densüy. The kinematic density is 

(3.29) dK = 0)1 A 0)2 A C03 A 0)12 A w» A wsa-

To give a geometrical interpretation to un = ei dci, we observe 
that if we take on the plañe ei, e^ two fixed orthogonal unit vectors 
eí, el and cali a the angle between ei and e*, we can write «i = 
eos a e* + sin a el, 62 = — sin a e* + eos a e?; therefore, Ci dej = 
—da. That is, 0)12 means an elementary rotation about the Ca-axis. 
Consequently, according to (3.17) and (3.29), if a motion is deter-
mined by the position of the moving frame (Q; ei, e^, 63), the kine­
matic density has the form 

(3.30) dK = dP A da A da, 

where dP is the volume element of E3 at the origin Q of the moving 
frame, da is the área element of the unit sphere corresponding to 
the endpoint of es, and da is the element of rotation about es. 
We remember that we always consider the densities in absolute 
valué; thus, there is no question of sigo. 

Let us do an application of (3.30). Let F be a fixed curve with 
continuous tangent at every point and finite length L and let S 
be a moving surface of class C and finite área F. Let Q be a point 
of r n 2 and let es be the normal to S at Q. If 6 denotes the angle 
between es and the tangent to T at Q (which we may take as the 
es-axis of the fixed frame) and df denotes the área element of 2 
at Q, we have dP = |cos d\ df A ds (s = are length of T). Putting 
this valué in (3.30) and integrating over all the positions of 2 in 
which it has common point with T, because each position of 2 
will be counted as many times n as intersection points have 2 
and r , we get 

(3.31) / ndK = ATT^FL. 

Notice that the same formula holds if we suppose 2 fixed and V 
moving with density dK. 

If 2 is the unit sphere, we can take the origin of the moving 
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frame at the center of S; then we have í n dK = STT'' Í n dP, and 

(3.31) gives 

(3.32) j ndP = 2wL, 

which is valid for any rectifiable curve (51). 

3.7. A differential formida. In Section 5 we will need an im­
portant auxiliary formula which derives from (3.30). Let So be a 
fixed surface of class C^. At each point Q of 2o we consider an 
orthogonal frame (Q; e?, ei, es) with origin at Q and with e" normal 
to 2o. If the displacement vector on 2o at Q is wie? + W2e2, the área 
element is d/ = <oi A cci. To the unit vector e" tangent to 2o at Q 
which forms with e? the angle TO, is attached the differential form 
dLo = oíi A t<)2 A dro caUed the density for lina elements (Q; e°) on 
2o, and the pfaflSan form ds = eos TO COI + sin TQ 012 called the ele­
ment of length corresponding to the direction e". 

Now let 2i be a moving surface of class C , and assume that 
the intersection 2o D Si is a rectifiable curve r . Let Q be a point 
of r and (Q; ei, 62, 63) be an orthogonal frame with 63 perpendicular 
to Si. Let ds be the length element of r at Q and dso, dsi those 
normal to T on 2o and Si, respectively. Let 6 be the angle between 
the normals e", 63. If dfo, dfi are the elements of área of So, 2i at Q 
and dP denotes the element of volume of E3 at Q, we have dP = 
sin 6 dfo A dsi and dfi = ds A dsi. The element of área of the 
unit sphere at the endpoint of e, may be written dcr = sin Bd6 A dm. 
Putting now (¿Ti = da to unify the notation of (3.30), from this 
equation and the preceding relation, we deduce immediately (up 
to the sign) 

(3.33) ds A dií = sin^ B dfo A dro A d/i A dn A dd 

= sin'' e dLo A dLi A dB, 

which is the differential formula we want. 
An immediate consequence is obtained by integrating both 

sides over all positions of the moving surface 2i. We get 

(3.34) í LdK = 2TrWoFi, 
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where L denotes the length of the curve So O 2i, and FQ, FI are 
the areas of So, Si, respectively. 

If Si is the unit sphere and we take the origin of the moving 
frame at the center of Si, we have 

j LdK = 8ir^ j L dPi 

and (3.34) gives 

(3.35) f LdP = •K'FO. 

3.8. A definition of àrea. Let now Si, S2 be two moving unit 
spheres and So a fixed surface. Let N be the number of points 
of the intersection So D Si O S2. If dPi denotes the volume ele­
ment at the center of 2; (i =. 1, 2), we get from (3.32) and (3.35) 

J N dPi dPi = 2w j LdPi = 27r'/í'o. 

Conversely, this result conduces to define the àrea of a con-
tinuum of points by the formula 

F,==^^f NdP,dP2, 

provided the integral of the right-hand side exists [see (52)]. 
Applications of the integral geometry to the definition of àrea 
for fc-dimensional surfaces have been made by Federer (17-19) 
and Hadwiger (23) and (25). See also Nòbeling (45) and (46). 

3.9. Planes through a fixed point. Let us now consider the set 
of planes Eo which pass through a fixed point 0. The density for 
sets of Eo invariant under the group SOÍo of the rotations about 0, 
is clearly dEo = da, where da denotes the àrea element of the unit 
sphere corresponding to the direction perpendicular to Eo. In fact, 
this differential form is invariant under ÍSlo, and, because of the 
transitivity of the planes Eo with respect to SDío, it is unique up 
to a constant factor. The planes Eo are considered non-oriented; 
therefore, the measure of all the planes through 0 will be 

(3.36) j dEo = /j2 da = 27r, 

where ^Z denotes the half of the unit sphere. 
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Let )S be a fixed are of great circle on the unit sphere of center O 
of length a. The measure of the set of planes E^ which intersect 
<S (= measure of the set of great circles which intersect S) will be 
the área of the lune bounded by the great circles the peles of 
which are the endpoints of S—that is, miEo; S D Eo 9^ 0) = 2a. 
If instead of S we have a spherical polygonal Une r t h e sides of 
which have the lengths a,-, we have, writing the last formula for 
each side and adding, 

(3.37) j ndEo= 2L, 

where L denotes the total length of r . The integration is extended 
over all (non-oriented) planes through O—that is, according to 
dEo = da-, over half the unit sphere. By a limit process we can 
prove that (3.37) holds for any rectifiable spherical curve of the 
unit sphere. 

Following Fenchel (20), we want to apply (3.37). Let if be a 
closed space curve of class C^ without múltiple points and let V 
be the spherical indicatrix of it (= the curve T = T(s), where T 
is the tangent unit vector to K). The are length element of r is 
dsi — \x\ ds, where x denotes the curva ture and s the length oí K. 
Consequently, (3.37) yields 

(3.38) f ndEo = 2 í \x\ ds. 

Every closed space curve K has at least 2 tangents which are 
parallel to an arbitrary plañe. This means that every plañe Eo 
interseets T in at least 2 points. Henee, n è 2, and (3.36) and 
(3.38) give 

(3.39) L > 271 

a classieal inequality of Fenchel. 
If K is knotted, it is easy to see that it has at least 4 tangents 

parallel to an arbitrary plañe. Henee, n ^ 4, and (3.36) and (3.38) 
give the following inequality of Fáry (for knotted curves) (16), 

(3.40) ¿ IH ds è 47r. 
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These results have been generalized to closed varieties in En by 
Chern and Lashof (11). 

4 . APPLICATIONS TO CONVEX BODIES 

The integfal geometry is closely related to the theory of convex 
bodies. We compile in this section some simple facts on this theory 
from many sources—for example, Bonnesen and Fenchel (4), 
Busemann (5), Hadwiger (24), and Vincensini (72). 

Let fc be a plañe convex set of àrea / placed in E3. Let f, be 
the àrea of the orthogonal projection of A; on a plañe perpendicular 
to the direction <r, and let 6 be the angle between <r and the normal 
to the plane which contains k; we have/ , = |cos 6\ f. If da denotes 
the àrea element of the unit sphere Z corresponding to the direc­
tion <T, we have 

(4.1) ¡^ f,d<7=f p d<p fj Icos e\smede = 2irf, 

a,nd, therefore, 

(4.2) f=ezLí'^-
Now let i í be a convex body of Ez; we shall denote by dK the 

convex surface bounding K. Let F be the àrea of dK and F„ the 
àrea of the orthogonal projection oi K oo. & plane perpendicular 
to the direction a. Applying (4.2) to each element of àrea of dK 
and integrating over all dK, we get 

(4.3) F = - ¡ F, da, 

known as Cauchy's formula for the àrea of a convex body. 
Let 0 be an interior point of K and p = p(o-) = p{B, <f>) be the 

supporting function of K with respect to 0 (= distance from 0 to 
the supporting plane perpendicular to the direction a of spherical 
coordina tes d, <p). The convex body Kh parallel to K at distance h 
has the supporting function pu = p(<r) + h, and if ñi, R^ are the 
principal radii of curvature of dK, those of dKh at corresponding 
points are Jf2i + A and R2 + h. Between the àrea element df of 
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dK and the área element do- of its spherical image, there is the 
relation dJ/d(T = R\R2, and consequently, we have 

(4.4) f = 1^ ñiñ2 da. 

Applying this formula to dKh, we get 

(4.5) Fh = J^ (ñi + h){Ri + h)d<j = F + 2Mh + 47r/l^ 

where 

(4.6) M = l[^iR. + R.)d.^m^^ + ^)df 

is the integral of mean curvature of dK. If V denotes the volume 
of K and Vh that of Kh, from (4.5) we deduce 

(4.7) VH = V + ¡^^ F^dh = V + Fh + Mh} + iirh\ 

which is the so-called Steiner's formula for parallel convex bodies 
in Ez. 

For plañe convex sets, the formula analogous to (4.7) is 

(4.8) h = f + uh + Th\ 

where u = length of dk. Applying (4.8) to the orthogonal projec-
tion of i í on a plañe perpendicular to the direction a, we have 

F,,h = F, + u,h + -KK", 

and by Cauchy's formula, 

(4.9) FH=-Í F,.n da = - ÍF.da + - í u, da + ^^h\ 

Comparing (4.9) with (4.5), we get (since both formulas hold 
for any h) 

(4.10) ^ = ¿i"'̂ ''' 
which is a very useful expression for the integral of mean curvature 
of the boundary of a convex body. 

On the other side, considering the volume F of i? as a sum of 
pyramids with the common vértex O, we have 
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(4.11) ^=^fsKP^f=iIz P^'^' ^· 
Appljdng this formula to Kh, we get 

VK = \¡^{V + h){Ri + hXR2 + h) da 

= F + I /^ (ñiñí + piRi + R,)) da 

Comparison with (4.7) yields 

(4.12) F= i ¿ piRi + Ri) da, M = f^p da. 

The last formula allows definition of M for any convex body 
without the conditions of regularity necessary to define the prin­
cipal radii of curvature of dK. A practical way to compute M 
for convex surfaces dK not sufRciently smooth is to compute the 
integral of mean curvature MA of the parallel surface dKn (which 
is smooth) and then to pass to the limit for h —*0. This method 
yields the foUowing results easily. (1) For a convex polyhedron 
the edges of which have lengths ÜÍ and the corresponding dihedral 
angles of which are a,-, we have 

M = i S (ir - ai)ai. 

(2) For a right cylinder of height h and radius r, 

M = irh + irh. 

(3) For a plañe convex domain, considered as a flattened convex 
body of Es, we have 

M = -^u, 

where u is the length of the boundary of the domain. 
Notice that, according to (3.22), the second formula (4.12) 

gives the measure of the set of planes E which cut K—that is, 
we have the formula 
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(4.13) I dE = M. 

On the other side, applying (3.28) to convex surfaces (n = 2), 
we get 

(4.14) / 

We may therefore state: 

The volume V of a convex body K is the measure of the •points 
contained in it; the àrea F of dK is {up to the constant factor ir/2) 
the measure of the Unes which intersect K; the integral of mean 
curvature M is the measure of the planes which intersect K. 

These integral geomètric interpretations of V, F, and M have 
been generalized to convex bodies of the n-dimensional euclidean 
space [(60) and Hadwiger (23) and (25)]. 

5 . THE KINEMATIC FUNDAMENTAL 

FORMULA IN E^ 

5.1. The Euler characteristic of a domain. Let S be a closed 
surface in Ei which is of class C and bounds a domain D of vol­
ume V. If df is the àrea element of S and da the àrea element of 
the corresponding spherical image, we know the formulas 

da^ _l_ 
df RiRï (5-1) 9 = (̂̂ ) = /.¿-/^=^--' 

where Ri, RÏ are the principal radii of curvature, /(S) denotes 
the àrea of the spherical image of S, and x = xiD) is the Euler 
characteristic of D. Because 2 is closed, its spherical image covers 
the unit sphere an integer number of times, and therefore x = 
/(2)/4Tr is an integer. For example, for domains topologically 
equivalent to the sòlid sphere, x = 1, and for domains which are 
topologically equivalent to a torus, x = 0 [see, for example, 
Struik (69, p. 159)]. 

If 2 is not of class C^ but consists of a finite number of faces 
(= pieces of class C^) which intersect along edges (= closed 
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curves of class C ) , the Euler characteristic is obtained adding 
to the àrea of the spherical image of the faces (5.1) the àrea of the 
spherical image corresponding to the edges, which we shall now 
compute. Let r be an edge of S and let T, N, B, denote its unit 
vectors tangent, principal normal, and binormal; let s be the arc 
length of r . If 63, e's are the outward normal unit vectors to the 
faces of 2 at the points of- T and we call di, dí the angles which 
they form with —N, the spherical image corresponding to F is 
the portion of unit sphere defined by the equation, 

Y(s, e) = - c o s d N'+ smOB (di ^ d ^ e'i,0 ^ s ^ L), 

where L is the length of F. 
Using Frenet's formulas, we have Fi = 1, Y,Ye = — r, K? = 

x^cos^e + r^ {YlY^s - (Y.Yery = xcosfl, where x and r are 
the curvature and the torsión of F. The àrea /(F) of the spherical 
image corresponding to F will be 

(5.2) /(F) = f xcosOdBds = f (sin di — sin Oi) xds. 

Under the assumption that S has no vértices (= points in 
which more than two different faces intersect), the Euler char­
acteristic of S is given by the second formula (5.1); we take into 
account that at the left side, the integral analogous to (5.2) for 
all the edges of 2 should be added. 

5.2, The hinematic formula. Let Z)o, Z)i be two domains of Ei 
bounded respectively by the surfaces 2o, 2i, which we assume to 
be of class C^. Let F,-, Xi be the volume and the Euler character­
istic of Di and let Fi, Mi be the àrea and the integral of mean 
curvature of 2 , (z = 0, 1). Suppose Do is fixed and Di is moving, 
and let dK be the kinematic density for Di. If $(£)o H Di) denotes 
a function of the intersection Do D Di, one of the main purposes 
of the integral geometry is the evaluation of integrals of the type 

(5.3) J = j $(Z)o n Dl) dK 

over all positions of Di. For example, if $ = Foi = volume of 

Do n Dl, we can easily prové that / Foi dK = Sir^FoFi, and if 
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$ = Foi is the àrea of the boundary of Do H Di, the formula 

í Füi dk = 8v\VoFi + yiFo)holds (50). The most important case 

corresponds to $ = x(í)o D Di) is the Euler characteristic of 

JDO n -Dl. Surprisingly enough, the integral / x{Do H -Di) dK over 

all positions of Di can be expressed by only Vi, x., Fi, Mi (i = 0, 1). 
The result is the foUowing: 

(5.4) / x(£>o n Dl) dK = SirHFo xi + Fixo) + 2ir{FoMi + FiMo). 

This result is the so-called kinematic fundamental formula, which 
we shall now prové. 

We need to compute xiDo H Di). The boundary of Do H Di 
consists in a part Soi of 2o which is interior to Di and a part Sio 
of Si which is interior to Do. Both 2oi and 2io are of class C and 
are joined by an edge r = So O Si, composed of one or more 
closed curves, of the boundary of Do H Di. According to (5.1) 
we will have 

(5.5) 4irx(Do n Dl) = 7(2oi) + /(S,o) + I{T), 

and we can write 

(5.6) iiT j x(Do n Dl) dK = j Z(2oi) dK 

+ / /(2io) dK + ¡ I{T) dK, 

where the integrals are extended over all positions of Di. 
The first two integrals on the right-hand side of (5.6) are easily 

evaluated. Taking the first integral, let P be a point of 2o O Di 
and let dcp denote the àrea element of the unit sphere at the 
spherical image of P. By first fixing Di and then letting P vary 
over 2o H Di, we get 

j dap dK = j /(Soi) dK, 
pe&noi 

and by first fixing P and then rotating Di about this point and 
letting it vary over Di and 2o, 
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P€a>n2)i 

Thus, we have 

(5.7) / /(SoO dZ = 327r»Fixo. 

Similarly, by the evident invariance of the kinematic density 
under the inversión of the motion, we have 

(5.8) / /(Sio) dK = 327r»Foxi. 

I t remains to evalúate the third integral in (5.6). Let Q be a 
point of r . By Meusnier's theorem, if p is the radius of curvature 
of r and R, r are the radii of normal curvature of 2o and 2i in the 
direction of the tangent to T at Q, we have 

(5.9) p = R cos Bi = r cos 0[ 

where 6i, di are the angles between the outward normals es, eá to 
2o, 2i at Q and the vector —N opposite to the principal normal A'̂  
of r at Q. Taking into account the identity 

(5.10) sin e'l — sin dl _ 1 
cos d'l + cos dl ~ *^° 2 ^̂ * ~ *'^' 

and putting 6'i — 6i = 6, we deduce from (5.9) and (5.10) 

(5.11) sin e'l — sin fli -a-í) ta.a-e. 

If To, n denote the angles between the tangent to F at Q and 
the first principal direction of 2o, 2i at Q, by Euler's theorem 
we have 

cos'' Ti (5.12) - = ^^^^'"' + s'P" ̂ 0 
R Ri R2 

1 
ri 

where Ri, R^ are the principal radii of curvature of 2o, and ri, n 
are those of Si at Q. By (5.2), (5.11), and (3.33) we have 

(5.13) f liV) dK = f ÍSSÍJ^ , s m ' TQ 
-1 Tí 1- + 

s m ^ Ti 0 R2 Ti r2 

tan ie sin2 e d/o dro dfi dn de, 
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where the limits of integration for the angles are 

O ^ TO ^ 27r, O ^ Ti ^ 27r, O ^ fl ^ TT. 

Computing the integral in (5.13), we get 

(5.14) j / ( r ) dK = Sw^iFoMi + FiMo). 

Adding (5.7), (5.8), and (5.14), and considering (5.6), we get the 
desired result (5.4). 

The formula (5.4) is the work of Blaschke (3). I t has been gen-
eralized to En by Chern (8). For the generalization to spaces of 
constant curvature (noneuclidean geometry) see Wu (76) and 
(54), (57), and (58). For another kind of proof valid for more 
general domains than those considered, here, see Hadwiger (23). 

Notice that if Do, Di are convex bodies, we have x{D<¡) = 
xiDí) = xiDo n Di) = 1 if Z)o n Di ?̂  O, and x(Do O D,) = O, 
if Do n Di = 0. The formula (5.4) yields 

(5.15) f dK = 87r2(Fo + Vi) + 2iriFoMi + FiMo), 
Donoijío 

which gives the measure of the set of congruent convex bodies Di 
having a common point with a fixed convex body Do. 

If Di is a sphere of radius r, we can take the origin of the moving 

frame at the center of Di; then we have / dK = STT* / dP, and 

(5.15) gives 

j dP=Vo + For + Mor^ + firr', 

the Steiner's formula (4.7). 

6. INTEGRAL GEOMETRY IN COMPLEX SPACES 

6.1. The unitary group. The integral geometry of complex spaces 
has not been developed very much, and it deserves further study. 
We shall give a simple typical example. 

Let Pn be the n-dimensional complex projective space with 
the homogeneous coordinates Zi{i = O, 1, • • • ,n), so that z = 
(zo, Zi, Zí, • • •, z„) and X2 = {\zo, Xzi, • • •, Xz»), where X is a nonzero 
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complex number; define the same point. Let ?i denote the complex 
conjúgate of Zi. We assume the homogeneous coordinates 2, are 
normalized so that 

(6.1) (22) = S z^i = 1, 
0 

which determine 2< up to a factor of the form exp (ia). 
We consider the group U (unitary group) of linear transforma-

tions 

(6.2) z' = Az 

which leaves the form (6.1) invariant. The matrices A satisfy 

(6.3) AJ' = E, A-i = 1', l'A = E, 

where E is the unit matrix. These relations show that U depends 
upon (n + I)'' real parameters. If we intèrpret the elements 
ühkih = 0,1, •• ·,n) of the matrix A as the homogeneous co­
ordinates of a point ük G P„, the conditions (6.3) give 

(6.4) (üják) = 5,t, 

which show that the points ai are normalized; they form the 
vértices of an autoconjugate n-simplex with respect to the quadric 
(22) = 0. Because a* and o^ exp (ta*) are the same geomètric 
point, to determine an element M G U we must give the n + 1 
geomètric points a* [with the conditions of (6.4)], as well as the 
n + 1 real parameters a*. 

The invariant matrix of Maurer-Cartan is 

(6.5) w = 4 -1 dA = l ' d A , 

which satisfies, in consequence of (6.3), 

(6.6) co + ¿ ' = 0. 

The invariant pfaffian forms are 

(6.7) Ujk = 2 ahj dühk = (ay dat), 
h = 0 

and (6.6) gives 

(6.8) wjk + ¿iki — 0. 

The kinematic density of U, up to a constant factor, is 
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(6.9) du = [ n oijküjk n ukh], 3 < k, O ^ j , k,h ^ n, 

where the product is exterior. 
We have all necessary elements for the study of the integral 

geometry of the unitary group. We shall restrict ourselves to the 
case n = 2 (complex projective plañe). 

6.2. Meromorphic curves. A complex analytic mapping Ei —* Pi 
of the complex euclidean Une Ei into the complex projective plañe 
Pi defines a meromorphic curve in the sense of J. Weyl, H. Weyl 
(75), and L. Ahlfors (1); it is.defined by three analytic functions 
Zi = Zi{t), {i = O, 1,2). Every such curve T has an invariant 
integral with respect to U, which we shall cali the order of r . 
When the homogeneous coordinates Zi are normalized such that 
the condition (6.1) is satisfied, the order of V is defined by the 
foUowing integral (up to the sign which depends upon the orienta-
tion assumed for V), 

where i = V—1 and 

Q. 

(6.11) fi = \dz ds] = dzü A dza -\- dzi A dzi + dz^ A d&i. 

If r is an algébrale curve, we shall see that J coincides with its 
ordinary order or grad. 

If the coordinates Zi are not normalized, we set Zi = Zi/{zzy''^, 
and an easy calculation gives 

(6.12) Í2 = [dZ d'Z] = ! l A ^ ' dt A di, 

where z A z' denotes the vector with the components ziz'2 — ziz'y, 
z^'o — 2o22, and zozí — Ziz'o. 

For some purposes, it is convenient to write Í2 in another form. 
Let c be a point on the tangent to r at the point z such that 

(6.13) {ce) = 1, (cz) = 0. 

We will have (since c is on the tangent to r at 2), 

(6.14) dz = oz + /3c, dz = m-^^c 
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where a, /3 are the pfaflBan forms 

(6.15) a = {2dz), /3 = {cdz). 

From (6.13) and (6.14), we deduce 

(6.16) Í2 = [dz d2] = a A a + /3 A ^, 

and because a — — a, we ha ve a A a = 0. Therefore, 

(6.17) n = /3 A |3 = (c dz) A (c dz), 

a formula which will be useful in the followmg discussion. 
As an application, we shall use (6.17) to obtain the order of a 

complex straight line. Since J is invariant by unitary transforma-
tions and any line can be transformed into the axis zj = 0, it 
suffices to compute the order in this case. We take, in order to 
satisfy (6.1) and (6.13), 

z = {pe^{l + p2)-"2, 0, (1 + p^)-"»), 

c = {-e^O. + p ' ) - " ^ 0, p(l + p^)-"^), 

and we get 

(c dz) — — 
dp -\- ip dip 

(c dz) — — 
dp — ip dip 

1 + p ^ 

and 

(6.18) Í2 = (c dz) A (c dz) = 
2ip 

; dip A dp. 
(1 + P'f 

The order of the segment a ^ p g 6, 0 g * > ^ 2 7 r will be 

2ip , , &2 _ ^2 

''^^díll^ JxfT)-^^"^'^ (1 + p2)2 "̂̂  "'' ( l + a 2 ) ( l + 62) 

For a = 0, 6 = «>, we obtain / = 1, which is the order of a line. 

6.3. A generalization of the theorem of Bezout. Let Fi, r2 be two 
meromorphic curves of P2 of orders Ji, J2, respectively. Let MFa be 
the transform of r2 by M G U. In the theory of meromorphic 
curves it is important to determine the difference between the 
product J1J2 and the number A'̂ (ri C\ UFÍ) of points of intersection 
of Ti and UFÍ, each counted with its proper multiplicity [Ahlfors 
(1), Chern (9) and (10), and H. Weyl (75)]. 
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Our goal is more simple. We wish to obtain the mean valué of 
N{Ti n uTi) for all w G U. First, we will compute the integral 

(6.19) f^ NiTi n uT,) du 

where the element of volume du is given by (6.9). In our case, 
n = 2, making use of (6.8), and considering only the absolute 
valué, we have 

(6.20) du = (oo dai) A (ói dao) A (óo doi) A (02 dao) A (oi dch) 

A (52 düi) A (ao dao) A (5i dai) A (02 da^)-

Inasmuch as we are only interested in the transformations u 
such that Fi f) uT^ 9^ O, we may choose the points ao, ai, and Oa, 
which determine u, so that: ao = point of Ti n uT^; ai = point on 
the tangent to UT2 at Oo; Oj is then determined by the relations 
(6.4), which we now write 

(6.21) (aoOo) = (oíOi) = (0202) = 1, (aoSi) = (aoój) = (0102) = 0. 

Let s be the point in which the line determined by ai, 02 intersects 
the tangent to Fi at ao. We shall have 

(6.22) iss) = 1, (sao) = O, (sao) = 0. 

According to (6.17), the differential form which gives the order of 
MF2 is 

(6.23) ^2 = (5i dan) A (oi doo) = (5o dai) A (5i dao). 

Since we always take OQ on Fi, we have dao = aoo + fis, where 
a = (So dao), /3 = (s dao). Consequently, we have 

(02 dao) = /3(a2s), (a2 dSo) = Pia^s), 

and, by exterior multiplication, 

(6.24) (52 dao) A (a2 dSo) = (5o da2) A (52 dao) 

= (/3 A /3)(52s)(a2s) = (52s)(a2s)Qi, 

where Í2i is the differential form which gives the order of Fi. 
Frora (6.20), (6.23), and (6.24), we have 

(6.25) dw = Í22 A üiichs) {a^s) A (5i da2) A (52 dai) A (So dao) 

A (5i dai) A (52 da2). 
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We first keep fixed the geomètric points OQ, ai, and a^. With the nor-
malization (6.21), their homogeneous coordinates ay (h = 0, 1, 2) 
are determined up to an exponential factor exp (¿ay); the param-
eters aj(j = 0, 1, 2) are variables in (6.25). Putting oy = a* 
exp (iaj), we have daj = a/i da,, (a,- da,) = i duj, and, conse­
quen tly, / (5y doj) = 2n (j = 0, 1,2). 

From the right side of (6.25) it remains to evalúate (ÜQ being 

fixed) / (a2s) (a2s) (3i ¿02) A (Sj áai), where ai, Oa describe the line 

(óoz) = 0 which contains the point s. We can assume, because of 
the invariance of the integrand by unitary transformations, that 
this line is the axis zi = 0. According to (6.18), we then have 

(6.26) J (ai düi) A (òfe dai) = j , 2^ ^.^ dp d<p, 

where we have put 02 = (pe'·'íl + p2)-"^ 0, (1 + p")""^), fli = 
(_e.v(i + p2)-i/2,0, p(l + p2)-"2). Taking s = (0,0,1), we obtain 

1 
(6.27) 

and, therefore, 

{cks){ais) = 
1+P^ 

(6.28) / {a2s){a2s){ai doi) A {ckdai) 

1:1: 2ip 
a + p2ydpd,p=rri. 

From (6.25) and (6.28), we obtain the integral of du extended 
over all u such that Ti H ur2 ^ 0, each u counted A'̂ (ri H «1̂ 2) 
times. We get (up to the sign which is unessential), 

(6.29) ^ A^(ri n uTi) du = 327rVi/2, 

where / i and J2 are the orders of Ti and r2, respectively. 
To obtain the mean valué of A'̂ (ri H wr2), we need the total 

measure of U. Taking for Ti and T2 two straight lines, we know 

that Ji = Ji = 1 and N = 1; therefore (6.29) gives du = 32w^. 

Consequently, the mean valué of A'̂  is 
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(6.30) A^ = /1 /2 . 

For algébrale curves, N is constant and (6.30) gives the classical 
theorem of Bezout; therefore our result may be considered a 
generalization of this theorem to meromorphic curves. For the 
extensión to analytic manifolds of P„ see (56). 

7 . INTEGRAL GEOMETRY IN 

RIEMANNIAN SPACES 

7.1. Geodèsics which Ínter sed a fixedsurface. The methods of the 
integral geometry can be also applied to Riemannian spaces, 
mainly to spaces of constant curvatura or other spaces which admit 
a group of transformations into themselves. The case of surfaces 
is simple and well known (55). Here, we want to consider the case 
of 3-dimensional spaces. 

Let R3 be a 3-dimensional Riemannian space defined by d^ — 
qijdxidxj, where the summation convention is adopted; i, j are 
summed from 1 to 3. Let us introduce the notations, 

(7.1) F = (auxWiY", 
dF 

where x't = dxi/dt. As we know, a geodèsic of R3 is determined by 
a point Xi and a direction x'i, which is equivalent to give Xi, p,-
(i = 1, 2, 3). The density for sets of geodèsics is defined by the 
foUowing exterior differentialform, taken always in absolute valué: 

(7.2) dG - dpi A dx2 A dps A dx^ + dps A dxs A dpi A dxi 

+ dpi A dxí A dpi A dx2. 

The measure of a set of geodèsics is the integral of dG extended 
over the set. The density (7.2) is the second power of the differ-

3 
ential invariant S dpi A dxi, which constitutes the invariant in-

1 

tegral of Poincaré of the dynamics (6, pp. 19 and 78), and it therefore 
possesses the following two properties of invariance: (1) it is in­
variant with respect to a change of coordinates in the space; 
(2) it is invariant under displacements of the elements {Xi, p,) on 
the respective geodèsic. 
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To give a geometrical interpretation of dG, let us consider a fixed 
surface 2 and a set of geodèsics whieh intersect S. Let G be such 
a geodèsic and P its intersection point with S. In a neighborhood 
of P we may assume that the equation of S is 2:3 = 0 and that the 
coordinate system is orthogonal, that is, ds^ — g-a dxí + ça dxl + 
gfaa dxi, and thus p,- = guidxi/ds). If PÍ represents the cosine of the 
angle between G and the a;.-coordinate curve at P, we have 

dxi 
(7.3) Pi = V ^ j — ' . Pi - Vg^iPi, dpi = Vg^idpi + 

dXh 
Pi dxh 

To determine G according to the second property of invariance 
of dG, we may choose its intersection point P with 2. At this 
point we have Xi = 0, dx^ = 0, and, consequently, (7.2) talces the 
form 

(7.4) dG = dpi A dxi A dpa A dXi, 

or, according to (7.3), 

(7.5) dG = Vgng^ dpi A dxi A dv^ A dxi 

On the other hand, to each set of direction cosines j'l, P2, and pg cor-
responds a point of the unit euclidean sphere and the àrea element 
in it has the value (3.15) 

(7.6) d(T = 
dpi A dP2 

V3 

Henee, we have, in absolute value, 

(7.7) dG = |cos <p| dcr A df, 

where <(> is the angle between the tangent to G and the normal to 2 
at P, and df = y/çuÇis. dxi A dx2 is the element of àrea 2 at P. 

Integrating over all geodèsics which intersect 2, on the left side 
each geodèsic is counted a number of times equal to the number n 
of intersection points of G and 2 ; on the right, the integral of 
|cos (p\ da gives one-half the projection of the unit sphere upon a 
diametral plañe ( = ir). Consequently. we get the integral formula 

(7.8) í ndG = TTF, 
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where F is the área of 2. This formula generalizes (3.28) to Rie-
mannian spaces. 

7.2. Sets of geodèsic segments. Let t be the are length on the 
geodèsic G. From (7.7) we deduce 

(7.9) dG Adt = Icos vi da A df A dt. 

The product |cos <p\ dt equals the projection of the are element dt 
upon the normal to S at P ; consequently, |eos v'l df A dt equals 
the element of volume dP of the space at P, and (7.9) can be 
written in the form, 

(7.10) dG Adt = dP A da. 

An oriented segment S of geodèsic is determined either by G, 
t (G = geodèsic which contains S;t = abscissa on G oí the origin 
of S) or by P ( = origin of S) and the point of the unit euclidean 
sphere which gives the direction of S. The two equivalent forms 
(7.10) may therefore be taken as density for sets of segments of 
geodèsic lines. 

For example, let us consider the set of oriented segments S with 
the origin inside a fixed domain D. The integral of the left of (7.10) 

gives 2 / X dG, where X denotes the length of the are of G which 

lies inside D (the factor 2 appears as a consequence that dG means 
the density for non-oriented geodèsic lines). The integral of the 
right is equal to iwV, where V is the volume of D. Consequently, 
we have the foUowing integral formula 

(7.11) J\dG = 2irV, 

where the integral is extended over all geodèsics which intersect D. 

7.3. Some integral formulas for convex bodies in spaces of constant 
curvature. Let RÍ now be a 3-dimensional space of constant curva-
ture k. With respect to a system of geodèsic polar coordinates, 
it is known that the element of length can be written in the form 

(7.12) = dp̂  + sm' Vkp 
dr, 

where p denotes the geodèsic distance from a fixed point (origin 
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oí coordinates) and dr represents the length element of the 
2-dimensional unit euclidean sphere. The volume element has the 
form 

(7.13) dP = r— - dp A dcr, 

where da denotes the element of àrea on the unit sphere. 
Let Pi, P2 be two points in R3 such that there is only one 

geodèsic G which unites them. Let pi, pi be the abscissas on G of 
Pi and Pi. With respect to a system of geodèsic polar coordinates 
with the origin at Pi, the element of volume dPi has the form 

(7.14) dP, = s i n ' ^ J P 2 - P i | ^^^ ^ ^^ 

By exterior multiplication by dPi, we have, in consequence of 
(7.10), 

(7.15) dPi A dP, = si" ' ^ H P 2 - Pi\ ¿^^ ^ ¿^ ^ ¿g 

This formula is the work of Haimovici (27). 
Let Z) be a convex domain of volume V (that is, it contains, 

with each pair of its points, the arc of geodèsic, assumed unique, 
determined by them) and consider all the pairs Pi, Pa inside D. 
The integral of the left side of (7.15) is equal to V^. If X denotes 
the length of the arc of G which hes inside D, then by calculating 
the integral of the right side we have 

^ ^ sin2 Vfc |p2 - pi| dpi <̂P2 = 2 (^ ' "" ¿ si"' VÁX j . 

Henee, we have the integral formula 

(7.16) i / (^ ' ~ i ^^^' ^ ^ ) ^^ = 2 ^ ' ' 

where the integral is extended over all geodèsics which intersect D. 
For the elliptic space (fc = 1), this formula reduces to 

(7.17) ¡ (\2 - sin2 X) dG = 2V\ 

and for the hyperbolic space {k = — 1), 
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(7.18) j (sinh '̂X - XO dG = 2V\ 

For the euclidean space (fc 
in (7.16) we get 

(7.19) 

0), passing to the limit for A; —> O 

j \*dG = 67^ 

which is a formula of Herglotz [Blaschke (3)]. 
Formulas of this kind referring to convex figures ¡n the plañe or 

to convex bodies in the euclidean space were first obtained by 
Crofton (7), considered the creator of the integral geometry. A 
great deal of them were given successively by several authors: 
Lebesgue (34), Blaschke (3), Massoti Biggiogero (38^2). Paper 
(38) contains an extensive bibliography. 

The generalization to spaces of constant curvature is less known. 
However for certain types of formulas, the treatment in eUiptic 
space is more satisfactOry than that in euclidean space, owing to 
the possibility of dualization. Let us consider the foUowing ex-
amples. 

In the elliptic 3-dimensional space, all geodèsics are closed and 
have the finite length T. The planes have finite área 2ir. Since any 
geodèsic intersects a fixed plañe in one and only one point, the 
formula (7.8) gives the measure of the set of all geodèsics of the 
space: 

(7.20) j dG 

Let D be a convex body of área F and volume V and let us con­
sider the set of geodèsic segments of length ir which intersect D. 
The integral on the left of (7.10) extended over this set making 
use of (7.8) for n = 2, has the valué 

(7.21) f dGdt = ir j dG = ^F, 

and the integral on the right is 

(7.22) J dP Ada = 2TrV + J ^dP, 

where * denotes the solid angle under which D is seeñ from P 
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(P exterior to D). From (7.21) and (7.22), we deduce the integral 
formula 
(7.23) J ^dP = WF - 2irF. 

Let us now see which formula corresponds to (7.11) by duality. 
Let M, F be the integral of mean curvature and the àrea of the 
boundary of D. For the dual convex body D* it is known that we 
have 

(7.24) f* = 47r - F, M* = M, V* = ir^ - M - V. 

By duality to each straight line (geodèsic) G corresponds another 
straight line G* and, henee, if we use (7.24), formula (7.11) gives 

/ < X - V*) dG* = 277(71^ - M* - F * ) , 

where <p* denotes the angle between the two supporting planes of 
D* through G* and the integral is extended over all geodèsics G* 
exterior to D*. Taking into account (7.20) and (7.8), and replacing 
G* by G, we get the integral formula 

(7.25) f ipDG = 2IT{M + F ) - WF, 
Gn-o=o 

which has no analogue in the euclidean geometry. 
Similarly, as dual of the formula (7.17), we have 

(7.26) j i<p·' - sin2 rí dG = 2{M + VY - JTT'F, 

where, as in (7.25), ^ denotes the angle between the two supporting 
planes of D through G and the integral is extended over all geo­
dèsics which do not intersect D. For the integral geometry in 
spaces of constant curvature, see Petkantschin (48), and (53), 
(54), and (59). 

8 . SUPPLEMENTABY REMARKS AND 

BIBLIOGRAPHICAL NOTES 

8.1. General integral geometry. The integral geometry has its 
origin in the theory of geometrical probabilities [Crofton (13), 
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Deltheil (14), and Herglotz (29), and it was widely developed by 
Blaschke and his school in a series of papers quoted in Reference 
(3). The inclusión of the methods and results of the integral 
geometry within the framework of the theory of homogeneous 
spaces (as we have done in Section 2) is the work of Weil (73) and 
(74), and Chern (7). After their work, the measure theory in 
groups and homogeneous spaces became of fundamental interest 
in integral geometry. Every new result in that direction can be 
applied and probably exploited with success to get integral geo­
mètric statements; at least, it is sure that the integral geometry 
constitutes the most abundant source of examples [Nachbin (44) 
and Helgason (28, Chap. X)]. 

The inverse problem of finding a general formulation of certain 
particular formulas of integral geometry (Crofton's formulas) is 
also an interesting one [Hermann (30) Legrady (36)]. A very 
simple example foUows. We have seen that the kinematic density 
for the group of motions 9ÏÍ of the plane is dK = dP A da (1.11). 
From the point of view of the homogeneous spaces, dP is the 
density of the space ü)í/2)?i, where üíïi denotes the group of rota-
tions about a fixed point and da is the density of 3Jli. If we write, 
symbolically, dK = dSDí, dP = á(5m/2«i), da = dSDíi, the formula 
(1.11) gives dm = dim/Tli) A dSDÏi, which induces us to ask if it 
will hold for a general group & and its subgroup g. In this particu­
lar example, itis well known that the formula d® = ¿(©/g) A dfl, 
in fact, holds for any locally compact topological group ® and any 
closed subgroup g of ® [Weil (73, pp. 42-45) and Ambrose (2)]. 

8.2. Sets of manifolds. Some problems of integral geometry may 
also be presented under the foUowing form. Let V denote a dif-
ferentiable manifold and F a family of submanifolds in it. First 
we ask for the existence of a transformation group ® of F onto 
itself which transforms the elements of F onto elements of F. 
Then, if such a group exists, we ask for a measure of sets of 
varieties of F invariant under ®. We shall give two simple ex­
amples. 

Examples 

1. Let F be the euclidean plane E2 and F the family of all 
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circles of it. The group ® is known to be the group of similitudes 

(8.1) x' = p(x cos<p — ysin<p) + a, 

y' = p ( i s\n<p + y cos <(>) + b, 

which depends on the 4 parameters a, b, p, and <p. This group can 
be represented by the group of matrices, 

u = 

and by the method of Section (2.2), we find immediately that the 
forms of Maurer-Cartan are 

p cos (p 
p s i n tp 

. 0 

—p s m í{> 

p cos <p 
0 

a 
b 
1 

dp 

P 
t02 = d<p, 

cos <)5 j , sm ^ j . 
ü)3 = tía H ao, 

sm « j , cos <p ,, 
0)4 = da -\ db. 

P P 

The simihtudes which leave invariant a given circle are charac-
terized by a,b, p = constants, and, consequently, the system (2.3) 
is wi = 0, 0)3 = 0, 0)4 = 0. The density for sets of circles (of center 
a, b and radius p) invariant under the group of similitudes results: 

,„ _ da A db A dp 
p' 

2. Let V be the real projective plane and F the family of non-
degenerate conics in it. Then the group G is the projective group 
and the density for conics is (61), 

düm A da,oi A dam A dan A dan 
dC = 

3A2 

where A = det (a.y) and the equation of the conic is assumed to be 

aosfcl + 2a(,ixy + Uny^ + 2ao2X + 2any + 1 = 0 . 

Other examples of this kind have been given by Stoka (63-68). 
For sets of degenerate conics, see Luccioni (37). 

8.3. Integral geometry of special groups. The mètric (euclidean 
and noneuclidean) integral geometry is the best known; however, 
other cases have also been investigated. The integral geometry 
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of the unimodular afEne group of the euclidean space onto itself 
leads to certain affine invariants for convex bodies (62). The in­
tegral geometry of the projective group has been considered by 
Varga (70) and is pursued in (55); t ha t of the symplectic group has 
been studied by Legrady (35). 

I n the last years, Gelfand and his school have largely generalized 
the ideas of the integral geometry and used them in problems of 
group representation (21). 
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