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INTEGRAL GEOMETRY IN GENERAL SPACES
L. A. SaNTALG

Let E be a space of points in which a locally compact group of transformations
G operates transitively. Let dz be the left invariant element of volume in G.
Let H, and K, be two sets of points in E and denote by zH, the transformed
set of Hy by z (z € G). Let us first assume that the identity.is the only one
transformation of G which leaves H, invariant. If F(K, N zH,) is a function
of the intersection Ko N zH, , the main purpose of the so-called Integral Geometry
(in the sense of Blaschke) is the evaluation of integrals of the type

1) I= L F(KoN zHy) dz

and to deduce from the result some geometrical consequences for the sets K,
and Hy .

Let us now suppose that there is a proper closed subgroup g of G which leaves
H, invariant. The elements H = zH, will then be in one to one correspondence
with the points of the homogeneous space G/g. If there exists in G/g an invariant
measure and dH denotes the corresponding element of volume, the Integral
Geometry also deals with integrals of the type

@) I= L , PN dH

from which it tries to deduce geometrical consequences for K, .
In what follows we shall give some examples and applications of the method.

1. Immediate examples. Let us assume G compact and therefore of finite
measure which we may suppose equal 1. In order to define a measure m(K,) of a
set of points Ko, invariant with respect to G, we choose a fixed point P, in £
and set

@ mK) = [ ol2) dz

where ¢(z) = 1 if 2P, € K, and ¢(z) = 0 otherwise.
If the measures m(K,), m(H,), and m(K, N\ zH,) exist, it is then known and
easy to prove that

@ L m(Ko N zH,) dz = m(Koym(HL),

and since f¢ dz = 1, the mean value of m(K, N 2H,) will be m(Ko)m(Ho). There-
-, fore we have: Given in E two sets Ko, Hy, there exists a transformation z of G
such that m(K, N zH,) is equal to or greater than m(Ko)m(H,).
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If Ky consists of N points P; (f = 1,2, ---, N) and call »(K, N zH,) the
number of points P, which belong to zH,, we want to evaluate [¢ »(Ko N zH,) dz.
We set pi(x) = 1if zP; € Hop and ¢;(x) = 0 otherwise. According to (3) and the
invariance of dx we have

m(H) = [ oda) dz = [ o™ s
where oi(z™) = 1if P; € zH, and ¢(z™") = 0 otherwise. Consequently we have
(5) j; (KoM zHo) dz = ‘Z:, fo oda™) dz = Nm(Hy).

Thus the mean value of » is equal to Nm(H,) and we have: Given N poinis P
tn E and a set Hy of measure m(H,), there exists a transformation z of G such that
zHy contains at least Nm(H,) of the given poinis; it conlains certainly a number
greater than Nm(H,) if H, 18 closed.

3. An application to convex bodies. Let E be now the euclidean 3-space and G
the group of the unimodular affine transformations which leave invariant a
fixed point O. Let H be the planes of E. The subgroup g will consist of all affinities
of G which leave invariant a fixed plane H, . Each plane H can be determined
by its distance p to O and the element of area dws on the unit 2-sphere correspond-
ing to the point which gives the direction normal to H. The invariant element of
volume in G/g is then given by

(6) dH = p~ dp dun .

Let K, be a convex body which contains O in its interior, and let p(w) be the
support function of K, with respect to0. If we set F(K,N H) = 0if Ko N H » 0
and F(K,N H) = 1if K, N H = 0, (2) reduces to

@) 1(0) = aH = 3 [ 57 den
KEoNH=D

where the last integral is extended over the whole 2-sphere. If O is an affine
invariant point of K, (for insfance, its center of gravity), (7) gives an affine
invariant for convex bodies (with respect to unimodular affinities). The minimum
of I with respect to O is also an affine invariant which we shall represent by I, .

By comparing I, with the volume V and the affine area F, of K, the following
theorem can be shown: Belween the unimodular affine invariants I, , F,, and V
of a convex body the inequalities

(8) 1.V S (4x/3)', I.F: s (2*/3)

hold, where the equalities hold only if K 18 an ellspsoid.
For the analogous relations for the plane see (3). I do not know if in (8) I
can be replaced by the invariant I(0) corresponding to the center of gravity of K, .
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8. The group of motions in a space of constant curvature. The best known
case is that in which £ = S, is an n-dimensional space of constant curvature &
and G is the group of motions in it. In this case the invariant element of volume dz
in G is well known. If (Py, €}) (i = 1,2, 3, ---, n) denotes a fixed n-frame
(i.e., a point Py and n unit mutually orthogonal vectors with the origin at Py),
any motion z can be determined by the n-frame (P = zP,, ¢’ = zef). Let dP be
the element of volume in S, at P and let dws-, be the element of area on the
unit euclidean (n — 1)-sphere corresponding to the direction of ¢'; let dwa_s be the
element of area on the unit euclidean (n — 2)-sphere orthogonal to e' correspond-
ing to the direction of ¢! and so forth. Then dz can be written

9 dz = [dP dws—1 dwas ** - dun).

Let C, be a p-dimensional variety (p S n) of finite p-dimensional area A,
and C, a g-dimensional variety (g S n) of g-dimensional area A,. Assuming
p+q2nlet Ay o(C,N2C,) bethe(p + g — n)-dimensionalareaof C, N zC, .
Then the formula

(10) fa A,."_.(C, n :BC.) dz - %ﬁ‘wm s Wn A,Aq
holds, where w; denotes the area of the euclidean unit {-sphere, that is,
2O

“UETGF DR

If p+ g =n, Ay a(Cy N 2C,) denotes the number of points of the intersection
C, N zC, . Notice that (10) is independent of the curvature & of S, .

.If, instead of C,, we consider a g-dimensional linear subspace Lg of S, , and
denote by Apyea(Cp N L,) the area of the intersection of C,p with L, = zLg,
we obtain

(11)

12) j;  Arren(C, ML) L, = S2teztens y,

where g i8 the group of motions which leaves invariant Lq and dL, is the invariant
element of volume in the homogeneous space G/g normalized in such a way
that the measure of the L, which cut the unit (n —~ g¢)-sphere in S, be its area
(depending upon the curvature k of the space).

‘We shall give two applications:

a) Let S. be the euclidean n-sphere; G is then compact and according to (9)
its total volume will be f¢dx = ww; ‘- ws. In this case the mean value of
Apren(Cy N 2C,) Will be wpye—nw; we 4,4, . Consequently we have: Given on the
euclidean n-sphere two varieties C, , C, of dimensions p, ¢ (p + ¢ & n) and finite
areas A, , A, , there exists a motion z such that the area of the intersection C, N 2C,
is equal {o or greater than wpye wwy we Apd, .

b) We shall now give an application to the elementary non-euclidean geometry.
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Let T be a tetrahedron in the 3-dimensional space of constant curvature k and
let Ls be the planes of this space. One can show that

(13) fr vl ’1-'(2:: (r — adli + 2kV)

where [; are the lengths of the edges of T and «; the corresponding dihedral
angles; V is the volume of T'.
On the other hand (12) applied to the edges of T gives

(14) fm N(T N Ly) dLy = 2 Z:: I

where N(T N L,) denotes the number of edges which are intersected by Ly and
therefore is either N = 3 or N = 4, From (13) and (14) we can evaluate the
measures of the sets of planes L, corresponding to N = 3 and N = 4, Theee
measures being non-negative we get the inequalities (for the euclidean case
see [5])

[] [ []
2;«;1;—4]:V sf;z‘ss);mz‘—ow

which for k = 1, k = —1 gives the following inequalities for the volume V of a
tetrahedron in non-euclidean geometry

[] ’ []
% 2Q@x-nksVs %; (Ba¢ — =)l; for the elliptic space,

(] (]
%; r—38adisVSs i; (r — 2a)l; for the hyperbolic space.

These inequalities may have some interest because, as is known, V cannot be
expressed in terms of elementary functions of /; and «, .

4. A definition of p-dimensional measure of a set of points in euclidean n-space.
Let E be now the euclidean n-dimensional space E. . The methods of Integral
Geometry can be used in order to give a definition of area for p-dimensional
surfaces (see Maak [3], Federer [2], and for a comparative analysis Ndbeling
[4]). The idea of the method is as follows. The formulas (10) and (12) hold
for varieties which have a well-defined p- and g-dimensional area in the classical
sense. For more general varieties the same formulas (10), (12) can be taken
as a definition for A, (taking for C, a variety with A, well-defined), provided
the tniegrals on the lefi-hand sides exist. The problem is therefore to find the
conditions of regularity which C, must satisfy in order that the integrals (10)
or (12) exist.

We want to give an example,

Let C be a set of points in E, and let dP; be the element of volume in E,
at the point P, . Let N, be the number of common points of C with ¢ unit (n — 1)-
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spheres whose centers are the points P,, Py, Py, -+, P,. Let us consider the
following integrals (in the sense of Lebesgue)

(15) I = [N.aP.aPdPy - dP, (1= 1,2,3, ")

extended with respect to each P, to the whole E, .
The g-dimensional measure of C can be defined by the formula

(16) me(C) = 2%.; 1,.

Notice that if I, is the first integral in the sequence I , Iy, I3, - - - which has a
finite value (may be sero), then my(C) = « for ¢ < r and m,(C) = 0 for g>r.
The number r can be taken as the definition for the dsmension of C.

If C is a g-dimensional variety with tangent g-plane at every point, (16)
gives the ordinary g-dimensional area of C' (as may be deduced from (10)).
The definition (16) may be applied whenever the integrals (15) exist. Following a
method used by Nubeling [4] in similar cases, it is not difficult to prove that the
integrals I, exist if C is an analytic set (or Sualin set).

8. Application to Hermitian spaces. Let £ = P, be now the n-dimensional
complex projective space with the homogeneous coordinates &, &, -, &
and let G be the group of linear transformations which leaves invariant the
Hermitian form (¢8) = Y ¢E; .

If we normalise the coordinates § such that (¢£) = 1, every variety C, of
complex dimension p posseses an invariant integral of degree 2p, namely 0° =
(X[dédE])” (see Cartan [1]). Let us put

| p!
17) AR fc .

It is well known that if C, is an algebraic variety of dimension p, J,(C,)
coincides with its order.

If C, is an analytic variety (“synectic” according to Study, i.e., defined by
complex analytic relations) the methods of Integral Geometry give a simple
interpretation of the invariant J, . Let L_, be a linear subspace of dimension
n — pand put L., = zL,_,. If g is the subgroup of G which leaves L., in-
variant, and dL,, means the invariant element of volume in the homogeneous
space G/g normalised in such a way that the total volume of G/g is equal 1,
the formula

(18) [, ¥C,N L) dLey = 1,(C)

holds, where N(C, N La-,) denotes the number of points of intersection of Cy
with Ly, .
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A more general formula, assuming p + ¢ 2 n, is the following
(19) f Jpren(Cy N L) dLg = J,(C,)
ale

which coincides with (18) forg = n — p.
If dz is the element of volume in G normalized in such a way that the total
volume of G is equal 1, given two analytic varieties C, , C, we also have

(20) fa Joren(Cy N 2C,) dz = Jo(CT(Cy)

which may be considered as the generalisation to analytic varieties of the
theorem of Bezout.

For p + g = n, the foregoing formula (20) is a particular case of a much
more general result of de Rham [6].

6. Integral geometry in Riemannian spaces. The Integral Geometry in an
n-dimensional Riemannian space R, presents a different aspect. Here we do not
have, in general, a group of transformations G. However, if we take as geo-
metrical elements the geodesic curves I of R, , it is possible to consider integrals
analogous to (2), though conceptually different, and to deduce from them
geometrical consequences.

Let ds* = g;du’ du’ be the metric in R, and let usset ¢ = (giji'ii and
pc = dp/du’. The exterior differential form dI' = (2 [dp; du’])*™ of degree
2(n — 1) is invariant under displacements of the elements u‘, p; on the respective
geodesic. Therefore we can define the “measure” of a set of geodesic curves
as the integral of dTI' extended over the set.

Let us consider a bounded region D, in R, and let different arcs of geodesic
contained in Dy be taken as different geodesic lines. Let us consider a geodesic T’
which intersects an (n — 1)-dimensional variety C_, contained in D, at the
point P. Let do denote the element of (n — 1)-dimensional area on C.—; at P.
If dw.-1 denotes the element of area on the unit euclidean (n — 1)-sphere cor-
responding to the direction of the tangent to I' at P and 6 denotes the angle
between I and the normal to C,, at P, the differential form dT" may be written
in the form dI' = | cos 0 | [dws—dos). If C,—; has a finite (n — 1)-dimensional
area A.; and N(Ca_y N T) denotes the number of intersection points of C'n_; and
T, from the last form for dT it follows that

i)lll

Wa—t
1) [ ¥Cunmyar = 2=t 4,,
where the integral is extended over all geodesics of Dy .
If dt denotes the element of arc on I’ and dP is the element of volume in R,
at P, clearly we have [dT'df] = [dP dw.—,). From this relation if we consider
all arc elements (T, t) with the origin within a given region D (contained in D)
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of finite volume V(D) and call L(D N T) the length of the arc of I' which lies
within D, we obtain

(22) jp LONT)dr = %w...xV(D).

Some consequences of the formulas (21) and (22) for the case n = 2 have been
given in [8]. They have particular interest for the Riemannian spaces of finite
volume whose geodesic lines are all closed curves of finite length (for n 2 3 it
seems, however, not to be known if such spaces, other than spheres, exist).
For instance, one can easily show: If the geodesic lines of a Riemannian space R.
of finite volume V are all closed curves of constant length L and there exists in R,
an (n — 1)-dimensional variety of area An-, which intersects all the geodesic curves,
the inequalily

(n - l)w._1
LA, 2 ——— | 2

n=3
holds (equality for the elliptic space).
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