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INTEGRAL GEOMETRY IN GENERAL 8PACE8 

L. A. SANTALÓ 

Let £ be a space of points in which a locally compact group of transformations 
O operates transitively. Let dx be the left invariant element of volume in 0, 
Let Ho and Ko be two sets of points in E and denote by xHo the transformed 
set oi Hthy X (x ^ 0). Let us firat assume that the identity. is the only one 
transformation of O which leaves H» invariant. If F(K» D xHo) is a function 
of the interaection Ko 0 xHo, the main purpose of the so-called Integral Geometry 
(in the sense of Blasohke) is the evaluation of integrals of the type 

(1) / - /" F{KonxH,)dx 
Ja 

and to deduce from the result some geometrical consequences for the sets Ko 
and Ho. 

Let us now suppose that there is a proper dosed subgroup goSO which leaves 
Ho invariant. The elements H — xHo will then be in one to one correspondence 
with the points of the homogeneous space O/g. If there exists in O/g an invariant 
measure and dH denotes the corresponding element of volume, the Integral 
Geometry also deals with integrals of the type 

(2) / - /" F(Kor\H)dH 
Jalt 

from which it tries to deduce geometrical consequences for Ko. 
In what follows we shall give some examples and applications of the method. 

1. Immediate examples. Let us assume 0 compact and therefore of finite 
measure which we may suppose equal 1. In order to define a measure m{K^ of a 
set of points Ko, invariant with respect to O, we choose a fixed point Po'm E 
and set 

(3) m{Ko) m f ^x)dx 
Jo 

where ^(x) — 1 if xPo € Ko and ^(x) — 0 otherwise. 
If the measures Tn{Ko), tn{Ho), and m{Ko 0 xHo) exist, it is then known and 

easy to prové that 

(4) í rn(Ko 0 xHo) dx - m{Ko)miHo), 
Ja 

and sinoe /« dx •- 1, the mean valué of tn{Ko H xHo) will be m{Ko)tn(Ho). There-
. fore we have: Oivm in E two aeU Ko, Ho, then exitta a traniformaiion x of 0 

tuch that m{Ko 0 xHo) M equal to or greater than fn{Ko)tn(Ho). 
483 
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If Ko consists of iV points P< (t - 1, 2, • • • , N) and call VÍKQ d xHo) the 
number of points Pi which belong to xH», we want to evalúate /« viKo fi xHo) dx. 
We set <pi(x) — 1 if xPi € Ho and ^¿(x) — 0 otherwise. Àccording to (3) and the 
invaríance of dx we have 

m{H¿) •• / <p<(«) dx •» I <̂(«~*) dx 
Jo Ja 

where ̂ <(a!"*) - 1 if P< € xHo and «(x"*) — 0 otherwise. Consequently we have 

(5) I riKoOxH») dx·'Y.l «»<(«"') dx - Nm{,Ho). 
Ja 1 Ja 

Thus the mean valué of v is equal to NmÇflà) and we have: Given N points P< 
t'n E and a set Ho of measure m(Ho), there exids a tranrformation x ofG tuch that 
xHo contains ai least Nm(Ho) of the given points; it containa certainly a number 
greater than Nm(Ho) if Ho is dosed. 

2. An application to convex bodieg. Let E be now the euclidean Snspace and 0 
the group of the unimodular affine transformations which leave invariant a 
ñxed point O. Let H be the planes of E. The subgroup g will consistof allafiSnities 
of O which leave invariant a fíxed plañe Ho. Each plañe H can be determined 
by its distance p to O and the element of areadwt on the unit 2-sphere correspond-
ing to the point which gives the direction normal to H. The invariant element of 
volume in 0/g is then given by 

(6) dH " p~*dpd^. 

Let ÜLo be a convex body which contains O in its interior, and let p(wt) be the 
support function of Ko with respect toO. If we set F(Ko flH) ^Q]iKot\H ¥tQ 
and F{Ko fl ff) - 1 if /T. fl H - O, (2) reduces to 

(7) /(O) - / m^Wp-^d^t 

where the last integral is extended over the whole 2Hsphere. If O is an afiSne 
invariant point of Ko (for instance, its center of gravity), (7) gives an affine 
invariant for convex bodies (with respect to unimodular affinities). The mínimum 
of / with respect to O is also an affine invariant which we shall represent by Im • 

By comparing /«. with the volume V and the affine área F« of Ko the foUowing 
theorem can be shown: Between the unimodtdar affine invariants Im, F», and V 
of a convex body the inequalities 

(8) 7 . 7 á (4r/3)», IJ¡^, ú ( 2 V 3 ) T 

hold, where the eqyuüüies huid only if K is an eüipsoid. 
For the analogous relations for the plañe see [3]. I do not know if in (8) /» 

can be replaced by the invariant 7(0) corresponding to the centerof gravity of Ko. 
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3. The group of motions in a space oí constant curvature. The best known 
case is that in which E m Snia an n-dimensional space of constant curvature k 
and O is the group of motions in it. In this case the invariant element of volume dx 
in G is well known. If (Po i có) (t =« 1, 2, 3, • • • , n) denotes a fixed n-frame 
(i.e., a point Po and n unit mutually orthogonal vectors with the origin at Po), 
any motion x can be determined by the n-frame {P " xPo, e* "^ xei). Let dP be 
the element of volume in iS„ at P and let d^n-i be the element of área on the 
unit euclidean (n — l)-sphere corresponding to the direction of e'; let dun-t be the 
element of área on the unit euclidean (n — 2)H3phere orthogonal to c' correspond
ing to the direction of e* and so forth. Then dx can be written 

(9) dx — [dP dun-i du>n-i • • • den]. 

Let Cphe a, p-dimensional varíety (p té n) of íinite p-dimensional área A, 
and Cf a g-dimensional varíety {q á n) of ^-dimensional área Aq. Assuming 
p + 9 è n, let Ap+^n(C, O xC,) be the (p -f- 5 — n)-dimensionalareaof Cp O «C,. 
Then the formula 

(10) f A^^niC, n xC,) dx - *Í2±í=-" « 1 « , . . . « . A, A, 
Ja UpUg 

holds, where ut denotes the área of the euclidean unit tnjphere, that is, 

(11) m ^ r ( ( í + i ) / 2 ) -

líp + q " n, Ap^^„{C, n JC,) denotes the nimiber of points of theintersection 
C, n xC,. Notice that (10) is independent of the curvature k oí Sn . 

•If, instead of C,, we consider a 9-dimensional linear subspace L¡ of Sn , and 
denote by Ap^^n{C, O L,) the área of the intersection of C, with L, — i L j , 
we obtain 

(12) / A^^»(C,nL,)dL,-2l2±2=lfí^'A, 

where g is the group of motions which leaves invariant ¿« and dL, is the invariant 
element of volume in the homogeneous space G/g normalised in such a way 
that the measure of the L, which cut the unit (n — 9)-8phere in S» be its área 
(depending upon the curvature k oí the space). 

We shall give two applications: 
a) Let Sn be the euclidean n-sphere; 6 is then compact and according to (9) 

its total volume will be /« dx » uiut • • • u,. In this case the mean valué of 
A,+,_,(C, O xCq) willbeíi)w»-i»«p*«7'ApA,. Consequently we have: Oiven on the 
eudidean n-sphere two varieüe» C, , C, of dimensiont p, q (p + q ^ n) andfinite 
oreat A , , A, , there exista a motion x mich that the área oftheiniertectionCp D xC, 
i» equal to or greaier than Up^^nu^ «7 -^v^t • 

b) We shall now give an applicatíon to the elementary non-euclidean geometry. 
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Let 7* be a tetrahedron in tbe 3-dimensionsl spaoe of constant curvatura k and 
let ¿t be the planes of this space. One can show that 

(13) f dL, - i ( ¿ (» - «oli + 2kv) 

where li ara the lengths of the edges of T and a< the correeponding dihedral 
angles; V is the volume of T. 

On the other hand (12) applied to the edges of T gives 

(14) í N{Tr\L,)dLt~2'ZU 
Jo/t I 

where NiT f) Lt) denotes the number of edges which ara intersected by Lt and 
therafore is either AT - 3 or iST - 4. From (13) and (14) we can evalúate the 
measuras of the sets of planes Lt correeponding to AT • 3 and N ^ 4. These 
measures being non-negative we get the inequalities (for the euclideàn case 
8ee[5]) 

2 £ atli - 4 * y á ¡ i r L í < á 3 Z «<i< " 6*7 
1 1 1 

which for A; •• 1, A; — —1 gives the following inequalities for tbe volume V of a 
tetrahedron in non-euclidean geometty 

1 * 1 * 
7 23 (2a< — v)h ^ V ^ -^ (3a< — «•)!< for the elliptic space, 
4 O i 

1 ' 1 * 
s £ (•• ~ 3a<)Zí ^ V ^ -J^iw — 2adl{ for the hyperbolio spaca 
o 1 4 1 

These inequalities may have some intereet because, as is known, V cannot be 
expressed in terms of elementary functions of Z< and a, . 

4. A deflnition of p-dimeniional meaiure of a let of pointi in eucUdean n-ip«c«. 
Let E be now the euclidean n-dimensional spaoe E» . The methods of Integral 
Geometry can be used in order to give a definition of àrea for p-dimensional 
surfaces (see Maak [3], Federar [2], and for a comparative analysis NObeling 
[4]). The idea of the methòd is as follows. The formulas (10) and (12) hold 
for varieties which have a well-defined p- and g-dimensional àrea in the elaañcal 
sense. For mora general varieties the same formulas (10), (12) can be taken 
as a definition for Ap (taking for C, a variety with A , well-defined), provided 
the integral» on the left-hand eide» exiat. The problem is therefore to find the 
conditions of regularity whioh Cp must satisfy in order that the integrals (10) 
or (12) exist. 

We want to give an example. 
Let C be a set of points in En and let dPi be the element at volume in B» 

at the point P i . Let Ñ, be the number of oommon points of C with t unit (n — 1)-
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spheres whose centén are the points Pi, Pt, Pt, ••• , P,- Let us coosider the 
foUowing integráis (in the sense of Lebesgue) 

(15) I.^JN. dPi dPt dP," dP. (« - 1, 2, 3, • • •) 

extended with respect to each P< to the whole En . 
The 9-dimensional measure of C can be defined by the formula 

«• (16) m,(0-¿¿/,. 

Notice that if / , is the first integral in the sequence Ii,Is,It, • • • which has a 
finite valué (may be sero), then tn,(C) - «» for j < r and m^iC) - O for j > r. 
The number r can be taken as the definition for the dimeruion of C. 

If C is a 9-dimensional varíety with tangent 9>plane at every point, (16) 
givee the ordinary -̂dimensional área of C (as may be deduced from (10)). 
The definition (16) may be applied whenever the integrals (15) exist. FoUowing a 
method used by Ndbeling [4] in similar cases, it is not diffioult to prove that the 
integrals / . exist if C is an analytio set (or Suslin set). 

6. AppUcatioii to Henilitian qwcM. Let £ • P» be now the n^limensional 
complex projective space with the homogeneous coordinates {b, | i , • • • , I. 
and let O be the group of linear transformations which leaves invariant the 
Hermitian form ((|) - ^ < | < . 

If we normalise the coordinates (< suoh that (||) * 1, every variety C, of 
complex dimensión p poeseses an invariant integral of degree 2p, namely Q* « 
(Lldi4U)' (aee Cartan [1]). Let US put 

(17) ^ . W . ) - ^ . / . / -

It is well known that if C, is an algebraic variety of dimensión p, J,(Cp) 
coincides with its order. 

If Cy is an analytic varíety ("synectic" according to Study, i.e., defined by 
complex analytic relations) the methods of Integral Geometry give a simple 
interpretation of the invariant J,. Let L* _, be a linear subspace of dimensión 
n - p and put L»^ - x£* _, . If ^ is the subgroup of O which leaves L* ̂  in
variant, and dL»-p means the invariant elem«it oí volume in the homogeneous 
space 0/g notmaliied in such a way that the total volume of 0/g is equal 1, 
the formula 

(18) / , N(C, n L^) dL^ - /,(C,) 

holds, where N(C, O Ln^) denotes the number of points of intetseotioa of C, 
with ¿a-y • 
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A more general formula, assuming p + q ^ n,i8 the foUowing 

(19) í J^^n{C,r\L,)dL,''J,{C,) 
Jo/» 

which coincides with (18) for g — n — p. 
If dx is the element of volume in G normalized in such a way that the total 

volume of G is equal 1, given two analytic varieties C, , C, we also ha ve 

(20) f J^,-ÁC, n xC.) dx - J,{C,)J¿C,) 
Ja 

which may be considered as the generalisation to analytic varieties of the 
theorem of Bezout. 

For p + g — n, the foregoing formula (20) is a particular case of a much 
more general result of de Rham [6]. 

6. Integral geometry in Riemannian spaces. The Integral Geometry in an 
n-dimensional Riemannian space 72. presents a different aspect. Here we do not 
have, in general, a group of transformations O. However, if we take as geo-
metrícal elements the geodèsic curves r of A, , it is possible to consider integrals 
analogous to (2), though conceptually different, and to deduce from them 
geometrícal consequences. 

Let ds* — Qn du* du^ be the mètric in A. and let us set ^ >« (ffiiú'tlV and 
Pi - dip/dú'. The exterior diílerential form dT - (^[dpi d«*])"~' of degree 
2(n — 1) is invaríant under displacements of the elements u', pt on the respective 
geodèsic. Therefore we can define the "measure" of a set of geodèsic curves 
as the integral of dr extended over the set. 

Let US consider a bounded región Do in Rn and let different ares of geodèsic 
contained in Do be taken as different geodèsic Unes. Let us consider a geodèsic F 
which intersects an (n — 1)-dimensional varíety Cn-i contained in Do at the 
point P. Let dff denote the element of (n — l)-dimensional área on d - i at P. 
If dun-i denotes the element of área on the unit euclidean (n — l)-8phere cor-
responding to the direction of the tangent to F at P and O denotes the angle 
between F and the normal to Cn-i at P, the differential form dT may be wrítten 
in the form dF — | eos 0 | [dtan-idv]. If Cn-i has a fínite (n — l)-dimenBÍonal 
área An-i and N(Cn-i O F) denotes the number of intersection points of d - i and 
F, from the last form for dT it foUows that 

(21) f NiCn-i n F) dF - -ÍÍ5=L An^ 
JB» n — 1 

where the integral is extended over all geodèsics of Do. 
If dt denotes the element of aro on F and dP is the element of volume in R, 

at P, clearly we have [dT dt] •• [dP du^i]. From this relation if we consider 
all are elements (F, O with the orígin within a given región D (contained in Dt) 
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of finite volume V(D) and cali L(D O T) the length of the are of T whlch lies 
within D, we obtain 

(22) / L{D n D dr - 5 «^1 V{D). 

Some consequences of the formulas (21) and (22) for the caae n - 2 have been 
given in [8]. They have particular interest for the Riemannian spaces of finite 
volume whose geodèsic Unes are all closed curves of finite length (for n è 3 it 
seems, however, not to be known if such spaces, other than spheres, exist). 
For instance, one can easily show: / / the geodèsic linea of a Riemannian apoce R» 
of finite volume V are aU cloaed curvea of conatant length L and there exista in R» 
an (n — D-dimensional variety of orea A^i which interaeda aü the geodèsic curvea, 
the ineqiuUity 

2ci).-s 

holds (equalityfor the elliptic apoce). 
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