INTEGRAL GEOMETRY IN GENERAL SPACES

L. A. SANTALÓ

Let E be a space of points in which a locally compact group of transformations G operates transitively. Let dx be the left invariant element of volume in G. Let H_0 and K_0 be two sets of points in E and denote by xH_0 the transformed set of H_0 by x ($x \in G$). Let us first assume that the identity is the only one transformation of G which leaves H_0 invariant. If $F(K_0 \cap xH_0)$ is a function of the intersection $K_0 \cap xH_0$, the main purpose of the so-called Integral Geometry (in the sense of Blaschke) is the evaluation of integrals of the type

(1)
$$I = \int_{\sigma} F(K_0 \cap xH_0) dx$$

and to deduce from the result some geometrical consequences for the sets K_{θ} and H_{θ} .

Let us now suppose that there is a proper closed subgroup g of G which leaves H_g invariant. The elements $H = xH_g$ will then be in one to one correspondence with the points of the homogeneous space G/g. If there exists in G/g an invariant measure and dH denotes the corresponding element of volume, the Integral Geometry also deals with integrals of the type

(2)
$$I = \int_{g/g} F(K_0 \cap H) \, dH$$

from which it tries to deduce geometrical consequences for K_0 .

In what follows we shall give some examples and applications of the method.

1. Immediate examples. Let us assume G compact and therefore of finite measure which we may suppose equal 1. In order to define a measure $m(K_0)$ of a set of points K_0 , invariant with respect to G, we choose a fixed point P_0 in E and set

(3)
$$m(K_0) = \int_{\sigma} \varphi(x) dx$$

where $\varphi(x) = 1$ if $xP_0 \in K_0$ and $\varphi(x) = 0$ otherwise.

If the measures $m(K_0)$, $m(H_0)$, and $m(K_0 \cap xH_0)$ exist, it is then known and easy to prove that

(4)
$$\int_{\sigma} m(K_0 \cap xH_0) dx = m(K_0)m(H_0),$$

and since $\int_{G} dx = 1$, the mean value of $m(K_0 \cap xH_0)$ will be $m(K_0)m(H_0)$. There-. fore we have: Given in E two sets K_0 , H_0 , there exists a transformation x of G such that $m(K_0 \cap xH_0)$ is equal to or greater than $m(K_0)m(H_0)$. If K_0 consists of N points P_i $(i = 1, 2, \dots, N)$ and call $\nu(K_0 \cap xH_0)$ the number of points P_i which belong to xH_0 , we want to evaluate $\int_{\mathcal{G}} \nu(K_0 \cap xH_0) dx$. We set $\varphi_i(x) = 1$ if $xP_i \in H_0$ and $\varphi_i(x) = 0$ otherwise. According to (3) and the invariance of dx we have

$$m(H_0) = \int_a \varphi_i(x) \, dx = \int_a \varphi_i(x^{-1}) \, dx$$

where $\varphi_i(x^{-1}) = 1$ if $P_i \in xH_0$ and $\varphi_i(x^{-1}) = 0$ otherwise. Consequently we have

(5)
$$\int_{g} \nu(K_{0} \cap xH_{0}) dx = \sum_{1}^{N} \int_{g} \varphi_{i}(x^{-1}) dx = Nm(H_{0}).$$

Thus the mean value of ν is equal to $Nm(H_0)$ and we have: Given N points P_i in E and a set H_0 of measure $m(H_0)$, there exists a transformation x of G such that xH_0 contains at least $Nm(H_0)$ of the given points; it contains certainly a number greater than $Nm(H_0)$ if H_0 is closed.

2. An application to convex bodies. Let E be now the euclidean 3-space and G the group of the unimodular affine transformations which leave invariant a fixed point O. Let H be the planes of E. The subgroup g will consist of all affinities of G which leave invariant a fixed plane H_0 . Each plane H can be determined by its distance p to O and the element of area $d\omega_2$ on the unit 2-sphere corresponding to the point which gives the direction normal to H. The invariant element of volume in G/g is then given by

$$dH = p^{-4} dp d\omega_2.$$

Let K_0 be a convex body which contains O in its interior, and let $p(\omega_2)$ be the support function of K_0 with respect to O. If we set $F(K_0 \cap H) = 0$ if $K_0 \cap H \neq 0$ and $F(K_0 \cap H) = 1$ if $K_0 \cap H = 0$, (2) reduces to

(7)
$$I(O) = \int_{K \in O(H-0)} dH = \frac{1}{3} \int p^{-3} d\omega_2$$

where the last integral is extended over the whole 2-sphere. If O is an affine invariant point of K_0 (for instance, its center of gravity), (7) gives an affine invariant for convex bodies (with respect to unimodular affinities). The minimum of I with respect to O is also an affine invariant which we shall represent by I_m .

By comparing I_m with the volume V and the affine area F_a of K_0 the following theorem can be shown: Between the unimodular affine invariants I_m , F_a , and V of a convex body the inequalities

(8)
$$I_m V \leq (4\pi/3)^2, \quad I_m F_a^2 \leq (2^6/3)\pi^3$$

hold, where the equalities hold only if K is an ellipsoid.

For the analogous relations for the plane see [3]. I do not know if in (8) I_m can be replaced by the invariant I(O) corresponding to the center of gravity of K_0 .

3. The group of motions in a space of constant curvature. The best known case is that in which $E = S_n$ is an *n*-dimensional space of constant curvature k and G is the group of motions in it. In this case the invariant element of volume dx in G is well known. If (P_0, e_0^i) $(i = 1, 2, 3, \dots, n)$ denotes a fixed *n*-frame (i.e., a point P_0 and *n* unit mutually orthogonal vectors with the origin at P_0), any motion x can be determined by the *n*-frame $(P = xP_0, e^i = xe_0^i)$. Let dP be the element of volume in S_n at P and let $d\omega_{n-1}$ be the element of area on the unit euclidean (n - 1)-sphere corresponding to the direction of e^1 ; let $d\omega_{n-2}$ be the element of area on the unit euclidean (n - 2)-sphere orthogonal to e^1 corresponding to the direction of e^2 and so forth. Then dx can be written

(9)
$$dx = [dP \ d\omega_{n-1} \ d\omega_{n-2} \ \cdots \ d\omega_1].$$

Let C_p be a p-dimensional variety $(p \leq n)$ of finite p-dimensional area A_p and C_q a q-dimensional variety $(q \leq n)$ of q-dimensional area A_q . Assuming $p + q \geq n$, let $A_{p+q-n}(C_p \cap xC_q)$ be the (p + q - n)-dimensional area of $C_p \cap xC_q$. Then the formula

(10)
$$\int_{a} A_{p+q-n}(C_{p} \cap xC_{q}) dx = \frac{\omega_{p+q-n}}{\omega_{p}\omega_{q}} \omega_{1}\omega_{2} \cdots \omega_{n} A_{p} A_{q}$$

holds, where ω_i denotes the area of the euclidean unit *i*-sphere, that is,

(11)
$$\omega_i = \frac{2\pi^{(i+1)/8}}{\Gamma((i+1)/2)}.$$

If p + q = n, $A_{p+q-n}(C_p \cap xC_q)$ denotes the number of points of the intersection $C_p \cap xC_q$. Notice that (10) is independent of the curvature k of S_n .

If, instead of C_e , we consider a q-dimensional linear subspace L_e^0 of S_n , and denote by $A_{p+e-n}(C_p \cap L_e)$ the area of the intersection of C_p with $L_q = xL_e^0$, we obtain

(12)
$$\int_{g/g} A_{p+q-n}(C_p \cap L_q) \, dL_q = \frac{\omega_{p+q-n} \, \omega_{n-q}}{\omega_p} A_p$$

where g is the group of motions which leaves invariant L_q^0 and dL_q is the invariant element of volume in the homogeneous space G/g normalized in such a way that the measure of the L_q which cut the unit (n - q)-sphere in S_n be its area (depending upon the curvature k of the space).

We shall give two applications:

a) Let S_n be the euclidean *n*-sphere; G is then compact and according to (9) its total volume will be $\int_G dx = \omega_1 \omega_2 \cdots \omega_n$. In this case the mean value of $A_{p+q-n}(C_p \cap xC_q)$ will be $\omega_{p+q-n} \omega_p^{-1} \omega_q^{-1} A_p A_q$. Consequently we have: Given on the euclidean *n*-sphere two varieties C_p , C_q of dimensions p, q $(p + q \ge n)$ and finite areas A_p , A_q , there exists a motion x such that the area of the intersection $C_p \cap xC_q$ is equal to or greater than $\omega_{p+q-n} \omega_p^{-1} \omega_q^{-1} A_p A_q$.

b) We shall now give an application to the elementary non-euclidean geometry.

Let T be a tetrahedron in the 3-dimensional space of constant curvature k and let L_2 be the planes of this space. One can show that

(13)
$$\int_{T \cap L_{22} \neq 0} dL_2 = \frac{1}{\pi} \left(\sum_{i=1}^{6} (\pi - \alpha_i) l_i + 2kV \right)$$

where l_i are the lengths of the edges of T and α_i the corresponding dihedral angles; V is the volume of T.

On the other hand (12) applied to the edges of T gives

(14)
$$\int_{g/g} N(T \cap L_2) \, dL_2 = 2 \sum_{1}^{4} l_0$$

where $N(T \cap L_2)$ denotes the number of edges which are intersected by L_2 and therefore is either N = 3 or N = 4. From (13) and (14) we can evaluate the measures of the sets of planes L_2 corresponding to N = 3 and N = 4. These measures being non-negative we get the inequalities (for the euclidean case see [5])

$$2\sum_{1}^{6}\alpha_{i}l_{i}-4kV \leq \pi\sum_{1}^{6}l_{i} \leq 3\sum_{1}^{6}\alpha_{i}l_{i}-6kV$$

which for k = 1, k = -1 gives the following inequalities for the volume V of a tetrahedron in non-euclidean geometry

$$\frac{1}{4} \sum_{i=1}^{6} (2\alpha_i - \pi)l_i \leq V \leq \frac{1}{6} \sum_{i=1}^{6} (3\alpha_i - \pi)l_i \text{ for the elliptic space,}$$
$$\frac{1}{6} \sum_{i=1}^{6} (\pi - 3\alpha_i)l_i \leq V \leq \frac{1}{4} \sum_{i=1}^{6} (\pi - 2\alpha_i)l_i \text{ for the hyperbolic space.}$$

These inequalities may have some interest because, as is known, V cannot be expressed in terms of elementary functions of l_i and α_i .

4. A definition of p-dimensional measure of a set of points in euclidean n-space. Let E be now the euclidean n-dimensional space E_n . The methods of Integral Geometry can be used in order to give a definition of area for p-dimensional surfaces (see Maak [3], Federer [2], and for a comparative analysis Nöbeling [4]). The idea of the method is as follows. The formulas (10) and (12) hold for varieties which have a well-defined p- and q-dimensional area in the classical sense. For more general varieties the same formulas (10), (12) can be taken as a definition for A_p (taking for C_q a variety with A_q well-defined), provided ' the integrals on the left-hand sides exist. The problem is therefore to find the conditions of regularity which C_p must satisfy in order that the integrals (10) or (12) exist.

We want to give an example.

Let C be a set of points in E_n and let dP_i be the element of volume in E_n at the point P_i . Let N_i be the number of common points of C with s unit (n-1)-

486

spheres whose centers are the points P_1 , P_2 , P_3 , \cdots , P_s . Let us consider the following integrals (in the sense of Lebesgue)

(15)
$$I_s = \int N_s \, dP_1 \, dP_2 \, dP_3 \cdots dP_s$$
 $(s = 1, 2, 3, \cdots)$

extended with respect to each P_i to the whole E_n .

The q-dimensional measure of C can be defined by the formula

(16)
$$m_{e}(C) = \frac{\omega_{e}}{2\omega_{n}^{e}} I_{e}.$$

Notice that if I, is the first integral in the sequence I_1, I_2, I_3, \cdots which has a finite value (may be zero), then $m_e(C) = \infty$ for q < r and $m_e(C) = 0$ for q > r. The number r can be taken as the definition for the *dimension* of C.

If C is a q-dimensional variety with tangent q-plane at every point, (16) gives the ordinary q-dimensional area of C (as may be deduced from (10)). The definition (16) may be applied whenever the integrals (15) exist. Following a method used by Nöbeling [4] in similar cases, it is not difficult to prove that the integrals I, exist if C is an analytic set (or Suslin set).

5. Application to Hermitian spaces. Let $E = P_n$ be now the *n*-dimensional complex projective space with the homogeneous coordinates ξ_0 , ξ_1 , \cdots , ξ_n and let G be the group of linear transformations which leaves invariant the Hermitian form $(\xi\xi) = \sum \xi_i \xi_i$.

If we normalize the coordinates ξ_i such that $(\xi\xi) = 1$, every variety C_p of complex dimension p possesses an invariant integral of degree 2p, namely $\Omega^p = (\sum [d\xi_i d\xi_i])^p$ (see Cartan [1]). Let us put

(17)
$$J_{\mathfrak{p}}(C_{\mathfrak{p}}) = \frac{p!}{(2\pi i)^{\mathfrak{p}}} \int_{C_{\mathfrak{p}}} \Omega^{\mathfrak{p}}.$$

It is well known that if C_p is an algebraic variety of dimension p, $J_p(C_p)$ coincides with its order.

If C_p is an analytic variety ("synectic" according to Study, i.e., defined by complex analytic relations) the methods of Integral Geometry give a simple interpretation of the invariant J_p . Let L_{n-p}^{ϕ} be a linear subspace of dimension n - p and put $L_{n-p} = xL_{n-p}^{\phi}$. If g is the subgroup of G which leaves L_{n-p}^{ϕ} invariant, and dL_{n-p} means the invariant element of volume in the homogeneous space G/g normalized in such a way that the total volume of G/g is equal 1, the formula

(18)
$$\int_{a/p} N(C_p \cap L_{n-p}) dL_{n-p} = J_p(C_p)$$

holds, where $N(C_p \cap L_{n-p})$ denotes the number of points of intersection of C_p with L_{n-p} .

A more general formula, assuming $p + q \ge n$, is the following

(19)
$$\int_{g/g} J_{p+q-n}(C_p \cap L_q) \, dL_q = J_p(C_p)$$

which coincides with (18) for q = n - p.

If dx is the element of volume in G normalized in such a way that the total volume of G is equal 1, given two analytic varieties C_p , C_e we also have

(20)
$$\int_{g} J_{p+q-n}(C_p \cap xC_q) dx = J_p(C_p)J_q(C_q)$$

which may be considered as the generalization to analytic varieties of the theorem of Bezout.

For p + q = n, the foregoing formula (20) is a particular case of a much more general result of de Rham [6].

6. Integral geometry in Riemannian spaces. The Integral Geometry in an *n*-dimensional Riemannian space R_n presents a different aspect. Here we do not have, in general, a group of transformations G. However, if we take as geometrical elements the geodesic curves Γ of R_n , it is possible to consider integrals analogous to (2), though conceptually different, and to deduce from them geometrical consequences.

Let $ds^2 = g_{ij} du^i du^j$ be the metric in R_n and let us set $\varphi = (g_{ij} u^i \dot{u}^j)^{1/2}$ and $p_i = \partial \varphi / \partial \dot{u}^i$. The exterior differential form $d\Gamma = (\sum [dp_i du^i])^{n-1}$ of degree 2(n-1) is invariant under displacements of the elements u^i , p_i on the respective geodesic. Therefore we can define the "measure" of a set of geodesic curves as the integral of $d\Gamma$ extended over the set.

Let us consider a bounded region D_0 in R_n and let different arcs of geodesic contained in D_0 be taken as different geodesic lines. Let us consider a geodesic Γ which intersects an (n - 1)-dimensional variety C_{n-1} contained in D_0 at the point P. Let $d\sigma$ denote the element of (n - 1)-dimensional area on C_{n-1} at P. If $d\omega_{n-1}$ denotes the element of area on the unit euclidean (n - 1)-sphere corresponding to the direction of the tangent to Γ at P and θ denotes the angle between Γ and the normal to C_{n-1} at P, the differential form $d\Gamma$ may be written in the form $d\Gamma = |\cos \theta| [d\omega_{n-1}d\sigma]$. If C_{n-1} has a finite (n - 1)-dimensional area A_{n-1} and $N(C_{n-1} \cap \Gamma)$ denotes the number of intersection points of C_{n-1} and Γ , from the last form for $d\Gamma$ it follows that

(21)
$$\int_{D_0} N(C_{n-1} \cap \Gamma) d\Gamma = \frac{\omega_{n-3}}{n-1} A_{n-1}$$

where the integral is extended over all geodesics of D_0 .

If dt denotes the element of arc on Γ and dP is the element of volume in R_n at P, clearly we have $[d\Gamma dt] = [dP d\omega_{n-1}]$. From this relation if we consider all arc elements (Γ, t) with the origin within a given region D (contained in D_0)

488

(22)
$$\int_{D_0} L(D \cap \Gamma) \ d\Gamma = \frac{1}{2} \omega_{n-1} V(D).$$

Some consequences of the formulas (21) and (22) for the case n = 2 have been given in [8]. They have particular interest for the Riemannian spaces of finite volume whose geodesic lines are all closed curves of finite length (for $n \ge 3$ it seems, however, not to be known if such spaces, other than spheres, exist). For instance, one can easily show: If the geodesic lines of a Riemannian space R_n of finite volume V are all closed curves of constant length L and there exists in R_n an (n - 1)-dimensional variety of area A_{n-1} which intersects all the geodesic curves, the inequality

$$LA_{n-1} \geq \frac{(n-1)\omega_{n-1}}{2\omega_{n-2}} V$$

holds (equality for the elliptic space).

References

- 1. E. CARTAN, Sur les invariants intégraux de certains espaces homogènes clos et les propriétés topologiques de ces espaces, Annales de la Société Polonaise de Mathematiques vol. 8 (1929) pp. 181-225.
- 2. H. FEDERER, Coincidence functions and their integrals, Trans. Amer. Math. Soc. vol. 59 (1946) pp. 441-466.
- W. MAAK, Oberflächenintegral und Stokes Formel im gewöhnlichen Raume, Math. Ann. vol. 116 (1939) pp. 574-597.
- 4. G. NÖBELING, Ueber den Flächeninhalt dehnungebeschränkter Flächen, Math. Zeit. vol. 48 (1943) pp. 748-771.
- 5. G. PÓLYA and G. SZEGÖ, Aufgaben und Lehredize aus der Analysis, Berlin, 1925, vol. 2, p. 166.
- 6. G. DE RHAM, Sur un procède de formation d'invariants intégraux, Jher. Deutschen Math. Verein. vol. 49 (1939) pp. 156-161.
- 7. L. A. SANTALÓ, Un invariante afin para las curvas planas, Mathematicae Notae vol. 8 (1949) pp. 103-111.

8. ——, Integral geometry on surfaces, Duke Math. J. vol. 16 (1949) pp. 361-375.

UNIVERSITY OF ROSARIO, ROSARIO, ARGENTINA.