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Let X be a convex body in the n-dimensional euclidean space R". We consider the 
measure Mo(/), in the sense of the Integral geometry (i.e. Invaríant under the group of 
translations and rotations of R" [6, Chap. 15]), of the set of non-oríented line segments of 
length /, which are entirely contained in K. This measure is related by (3.4) with the integrals 
/« for the power of the chords of K. These relations allow to obtain some inequalities, like 
(3.6), (3.7) and (3.8) for Mo(/). Next we relate Mo(') with the function íiU) introduced by 
Enns and Ehiers (3], and prove a conjecture of these authors about the máximum of the 
average of the random straight line path through K. Finally, for n = 2, Mo(/) is shown to be 
related by (5.6) with the associated function to K introduced by W. Pohl (S). Some 
representation formulas, like (3.9), (3.10) and (5.14) may be of independent interest. 

1. Integrals for the Power of the Chords of a Convex Body 

Let K be a convex body in the n-dimensional euclidean space R". Let 
dG be the density for lines G in R" in the sense of integral geometry [6, 
Chap. 12] and let a denote the length of the chord GnK. The chord 
power integrals 

(1.1) ^"" / "^"^^ (m^O), 

have been well studied [6, p. 237]. If dP,, dPj denote the elements of 
volume of R" at the points P,, Pj ^ ^ and '' denotes the distance between 
P, and P^, the integrals 

(1.2) 7„ = J r dP, A dPj (m * - (n - 1)). 
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have also been considered and it is known that the relation 

(1.3) 2I„ = m{m-l)J„.„., 

holds good for m > 1 [6, p. 238]. 
For the cases m = 0,1 and m = n + 1 we have the simple formulas 

(1-4) Io = i ^ F , /, = (iO,.,)V. /,,, = (i^(« + l))V^ 

where F is the surface àrea of K and V its volume. 
We want to calcúlate /„ for the sphere S, of radius r in R". To this end, 

recalling that dG = d<7„_, A dO,., [6, (12.39)] where dtr,., is the àrea 
element of an hyperplane orthogonal to G at its intersection point with G 
and dO„., is the àrea element of the unit sphere at the end point of the 
unit vector paral·lel to G, we can write dG = p"'^ dO„_2 A dp A dO„_, and 
therefore we have (p being the distance from the center of the sphere to G) 

f 

(1.5) I„ = 2"-'0,.,0,., J (r' - pyp"-' dp 
0 

= 2'"-'0,.,0„.jr'"*"'· B(^(n - 1), i(m + 2)). 

where B(p, q) = r(p) r{q)/r(p + q) is the Beta function and O^ means 
the surface àrea of the /t-dimensional unit sphere, i.e. 

^ (*+lV2 

rCiih +1)) 

Therefore we have 

2'--V'"*"-'7r''""^/nr(jw) 
(1.7) IJS,) = 

rVin)r(\(m + n + D) 

2. Inequalitics of Hadwiger, Carleman and Blaschke for the 
Chord Integrals /„ 

The chord integrals I„ for convex bodies in R" satisfy certain in-
equalities. One of them is due to H. Hadwiger [4]: 
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(2.1) 2I„_,^n(^^^^\"'FV'-"'' in>2), 

where K,, denotes the volume of the n-dimensional unit ball, i.e. 

(2.2) 
h hrCih)' 

and F and V denote the surface àrea and the volume of K respectively. 
Taking into account the isoperimetric inequality 

(2.3) ««;,"• V'-""=eF, 

inequality (2.1) gives 

(2.4) 4/„.,^F^ («>2) . 

In (2.1) and (2.4) the equality sign holds only for the sphere. 
In [2] T. Carleman proved that in the plane, M = 2, J.i = ¡ r"' dP, A 

dPj = h has its máximum for the circle (for a given surface àrea) and 
pointed out that the same proof may be extended to showing that for 
convex bodies in R", the integrals /„ for m = 2 , 3 , . . . , n have a máximum 
for the sphere for a given volume V. Thus, taking into account (1.7) and 
(2.2) we have the following set of inequalities: 

(2.5) , 

^ vr(^(m + n + 1))/ 

for ffi = 2 , 3 , . . . , n. 
In [1], W. Blaschke proved that in the plane (n = 2) and for a given 

àrea F, the integrals /„ (m ^ 4) have its minimum for the circle. The proof 
is also easily extendible to R", so that, taking (1.7) and (2.2) into account, 
we can write the new set of inequalities (for R") 

(2.6) 

^ ^ \r(5(w + n + 1))/ 

for m ̂  /I + 2. In (2.5) and (2.6) the equality sign holds only for the 
sphere. 
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3. The Measure Mo(/) of the Line Segments of Length / Entirely 
Contained in a Convex Body /C in R" 

A line segment S of given length / in R" can be determined either by 
the line G which contains the segment and the abscissa / of the origin P of 
S on G, or by P and the point on the unit sphere 0„_, given by the 
direction of 5. The kinematic density for sets of line segments of length / 
(invariant under motions in R") is [6, p. 338]: 

(3.1) dS = dG A dí = dP A dO, B - l 

Using dS = dG A d/ we get that the measure of the set of line segments 
5 entirely contained in K is 

(3.2) M„(/)= j {a-l)dG. 

If P,, fj 3re two points of / í at a distance /, we have dP, A dP2 = 
/""' dO„_, A d/ A dP, (up to the sign) and therefore, since we consider the 
measure of non-oriented segments, we have 

Di«in(IC) 

(3.3) í / "dP , AdP2 = 2 í /'"*"-'Mo(/)d/. 

As a consequence of (1.3) and (3.3) we have 
Diani(X) 

(3.4) I„ = m(m-l)J„.,., = m(m-\) ¡ / " X O d / , 
0 

which holds for m^l.ln particular, for m = 2 we have 

Diwn(K) 

(3.5) /2 = 2 ¡ A/o(/)d/, 
0 

and the fírst inequality (2.S) gives 
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Diun(K) 
2l-l/'i^(»l/2)-l^UI/n/r./l \\lMy(n+l)/ii 

where the equality sign holds only for the sphere. 
For instance, for convex sets K in the plane, n = 2, we have 

Di«fn(K) 

8 
(3.7) í Mo(/)d/« F'^, 

j -wrz. 3 V ^ 

where F is the surface àrea of K. 
Taking into account the isoperimetric inequality 4irF ^ 1} and the 

inequality of Bieberbach F«Ï77D^ where D = diam(/C), we get the 
following inequalities (for convex sets in the plane): 

D D 

(3.8) J Mo(/) d/ ^ ^ 2 , J Mo(/) d/ ^ -i ITD' , 
0 0 

with the equality sign aiways only for the circle. 
From (3.4) we deduce that for every polynomial function of the form 

/ = Ojcr̂  + • • • + a^a'' we have 

D 

(3.9) J /((7)dG= J/V)Mo(ír)d(7. 
artKot 0 

By Weierstrass approximation theorem, this equality holds for every 
function /(o-) having continuous derivatives /"(o-) with the conditions 
/(0) = AO) = o. 

Integrating by parts the right side of (3.9) we have the following 
relationship 

D 

(3.10) J /(o-) dG = - J n<T)M'o((T) do-, 
onKnt 0 
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for every function /(o-) having continuous derivative /'(cr) and satisfying 
the condition /(O) = /'(O) = 0. 

4. The Invariants Í2(/) of Enns-Ehiers 

Denote by K(l, co) the transíate of /C by a distance / in the dírection lo. 
Enns and Ehlers [3] define /2(/) to be the volume oi Kr\ K{1, w) uni-
formly averaged over all dírections and normalized such that Í1(0)= 1. If 
o- denotes the length of the chord Gf) K, the volume of K (1 K(i, w) is 
precisely í„,i{a-- /)dí7„_,, where dír„_, denotes the arca element on the 
hyperplane orthogonal to the line G which has the direction w. There-
fore, since dG = do-,., A dO„_,, where dO„_¡ denotes the àrea element on 
the unit {n - l)-sphere corresponding to the direction w, we have 

(4.1) ^ ( ' ) = ^ ^ / ( ^ - O d a „ . , AdO,., = ^ ^ j {a-l)dG 

and thus, according to (3.2), 

"̂̂'̂^ mi)=-^^Mo(i)-

Therefore, (3.4) gives 

D 

(4.3) I„ = 'jm(m- 1)0,., V í /"-'/}(/) dl. 

For instance, if m = n + 1, taking (1.4) into account, we have 

D 

(4.4) í/-/2(/)d/ = ^ . 
0 

according to a result of Enns and Ehlers [3, (8)]. 
If a 'random secant' is defíned by a point in the interior of K and by a 

direction (the point and direction have independent uniform distríbution). 
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the k-xh moment of a random secant is (using (3.1)) 

(4.5) E((r*) = ^ ^ j o - * d P A d O „ _ , = - ^ ^ J c r * ^ ' d G 

2/c(/c + l) f , , 

0 

Thus, according to (3.4) we have 

and the inequalities (2.5) give 

'̂•'̂  ^^"^^ n^^-^nUk-^n^D) "̂  ' 

which holds for it = 1,2 n-l and the equality sign holds only for the 
sphere. For the sphere of radius r we have V = (2iT"'^lnrC2n))r" and 

therefore 

_ . 2'nri\n)rC2{k-^3)) , 

(̂ •̂7) ^ ^ " ^ = . r - r ( i ( fc + . + 2 ) ) ^ ' 

as is well-known (Enns-Ehlers [3]). 
In particular (4.6) implies that of all n-dimensional convex bodies K of 

volume V, E{a-) is maximized for the n-sphere. This proves a conjecture 
of Enns and Ehiers [3]. 

The inequalitiies (2.6) can be wrítten 

(4.8) t:(a ) ^<*^'W/^(^(it + „ + 2 ) ) ^ ' 

vàlid for üc = n + 1, « + 2, The equality sign holds only for the sphere. 
For the plane, « = 2, if F denotes the àrea of K, we have 

oc-1/2 -1 
(4.9) £ ( ^ ) ^ E{a') = -F, 
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and therefore, of all the convex sets of àrea F, the variance 

E(a')-(E{a)y 
977' 

is minimized for the circle (as conjectured by Enns-Ehiers [3]). The 
conjecture that the variance is also minimized for the sphere if n > 2 
remains open. 

5. The Associated Functions A{<T) of W. Pohl 

In this section we consider only the case of the plane, n = 2. In each 
line G we choose a point X(x, y) and the unit vector e(cos 0, sin d) 
corresponding to its direction. Consider the difïerential form cj = 
{àX, e) = cos d • áx + ún 6 • dy. Then we have dw = - s i n ^ d d A 
àx + cosBàe ^dy = àG (according to [6,(3.11)]). W. Pohl [5] defines 
the associated function A{CT) to the convex curve dK by 

(5.1) A{a)= I u)= I cosads , 

»K aK 

where the integral of o) extends to the non-oriented lines (X, e), X G dK, 
that determine on the convex set / í a chord of length a and in the last 
integral a denotes the angle between the tangent to dK and G at the 
point X corresponding to the element of the arc ds. 

A simple geomètric descríption of A(a), at least for small vàlues of a; 
is the following [5]: Let dKg be the curve envelope of the chords of K of 
length a. Then A(o-) is length of dK^. For instance, for a circle of 
diameter D we have 

(5.2) A(o- )=7r(D ' -o-T-

Notice that our A{a) is one half of that of Pohl, which considers 
oriented lines. 

Let M,(/) be the measure of the set of non-oriented line segments of 
length / such that one end point is inside K and one outside K. Then we 
have [5] 
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(5.3) M,(/)=2 [A(cr)do-. 
0 

On the other side, using the kinematic density àS = àG A dí, we have 

(5.4) M,(/) = 2 í /dG + 2 [ aáG 

and by virtue of (3.2) we get 

(5.5) M„ + |M,= 7rF, 

where F is the surface àrea of K. From (5.3) and (5.5) we have 

(5.6) Mo=7rF- í/\(<7)dtr, 
0 

and 

(5.7) A(a)=-Mi(a). 

The relation (5.6) can be applied to compute the measure Mo(/) of 
non-oriented line segments of length / < D entirely contained in a circle 
of diameter D. Namely, from (5.2) we have 

(5.8) M„(/) =nF-7rj(D'- a')'^ úa 
0 

= i7r(7rD'- 2/(D'- / ' )"'- 2D' axcún(^^ , 

as is well known [6, p. 90]. 
Integrating by parts in (3.4) and taking into account (5.7), we get (for 

convex sets in the plane and m ̂  1) 
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D 

(5.9) /„ = m Jo-"-'A(o-)do-, 

where D is the diameter of K. This expression for the chord integrals /„ 
(for convex sets on the plane) is due to Pohl [5]. For m = 1 we have 

(5.10) |/i(<7-)do- = TTF . 

For m = 2, according to (2.5) we get the inequahty 

D 

8 (5.11) í o·A(o-)do·«-^^F"' 

For m = 3 we have 

(5.12) { a^A{a)áa = F\ 

and for m>2>. 

(5.13) í cr'"-A(cr) da ^ „ " [l'"^ F<"-«, 

In (5.11) and (5.13) the equality sign holds only for the circle. 
From (3.10) and (5.7) we have 

(5.14) / /(o-)dG = J/'(o-)A(o-)do-, 

which holds for every function /(o-) having a continuous derivative f'(a) 
and satisfying the conditions /(O) = /"(O) = 0. 
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The relation between the invariant íï(cr) of Enns-Ehlers and the 
associated function A(a) of Pohl, according to (4.2) and (5.6) is 

(5.15) A{a)=-TTFn\(r). 
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