ON THE MEAN CURVATURES OF A FLATTENED CONVEX BODY

L. A. SANTALO

Let E^n be the n-dimensional euclidean space and let L^r be a linear subspace of E^n . A convex body K^r contained in L^r can be considered as a flattened convex body of E^n . As a convex body of L^r , K^r possesses the mean curvatures

$$M_q^r (0 \leq q \leq r-1)$$

defined by (1). As a flattened convex body of \boldsymbol{E}^n , \boldsymbol{K}^r possesses the mean curvatures

$$M_q^n (0 \le q \le n-1)$$

defined as the limit of the mean curvatures $M_q^n(\varepsilon)$ of the convex body $K^r(\varepsilon)$ parallel exterior to K^r at the distance ε , as $\varepsilon \to 0$.

The purpose of the present note is to prove the formulae (18), (14), (15) which relate the mean curvatures M_q^r and M_q^R . As a consequence, we complete an integral-geometric result of Herolotz and Petkantschin [formula (16)].

1. Let K^r be a convex body contained in a linear subspace L^r of E^n . The boundary ∂K^r is an (r-1)-dimensional variety of L^r which is assumed to be twice differentiable.

If e_i (i=1,2,...,r-1) denote the principal radii of curvature of ∂K^r at a point P', the q-th mean curvature of K^r (as a convex body of L^r) is defined by

(1)
$$M_{q}^{r} = \frac{1}{\binom{r-1}{q}} \int_{\partial Kr} \left\{ \frac{1}{\varrho_{1}}, \dots, \frac{1}{\varrho_{q}} \right\} d\sigma_{r-1}$$

where the brackets $\{\}$ denote the q-th elementary symmetric function formed by the principal curvatures $1/\varrho_i$ and $d\sigma_{r-1}$ is the element of area of ∂K^r at P'.

As particular cases we have:

$$M_0^r = \sigma_{r-1} = \text{area of } \partial K^r$$
,

 $M_{r-1}^r = O_{r-1}$ = area of the (r-1)-dimensional unit sphere, i. e.

$$O_{r-1} = \frac{2}{\Gamma} \frac{\pi^{r/2}}{(r/2)}$$

For instance, if r=2, K^{s} is a plane convex figure and we have: $M_{0}^{2}=\sigma_{1}=\text{length}$ of the boundary of K^{s} ; $M_{1}^{2}=2\pi$. For r=8, if K^{s} is a convex body in ordinary space, we have: $M_{0}^{3}=\sigma_{s}=\text{surface}$ area of ∂K^{s} ; $M_{1}^{3}=\text{integrated}$ mean curvature of ∂K^{s} ; $M_{2}^{s}=4\pi$. For r=1, M_{0}^{1} is meaningless; however in this case we have:

$$M_{r-1}^r = O_{r-1} = O_0 = 2$$

and consequently we will allways take $M_0^1 = 2$.

We now consider K^r as a flattened convex body of E^n . In order to define its mean curvatures

$$M_q^n \ (q=1, 2, ..., n-1)$$

we consider first the mean curvatures of the convex body $K^r(s)$ parallel to K^r at a distance s (i. e. the set of points of E^n whose distance to K^r is $\leq s$) and then pass to the limit as $s \rightarrow 0$.

The boundary $\partial K^r(s)$ is a twice differentiable hypersurface of E^n with a well defined normal at each point P; let P' be the intersection point of K^r (considered as a convex body of L^r) we will say that P belongs to the region (A) of $\partial K^r(s)$; if P' is a point of ∂K^r we will say that P belongs to the region (B) of $\partial K^r(s)$.

At the points of the region (A), the element of area of $\partial K^r(s)$ is equal to $s^{n-r-1}dO_{n-r-1}d\sigma_r$ where $dO_{n-r-1}=$ area element of the unit (n-r-1)-dimensional sphere and $d\sigma_r=$ volume element of K^r . At the points of the region (B), the element of area of $\partial K^r(s)$ is equal to $s^{n-r}dO_{n-r}d\sigma_{r-1}$ where $d\sigma_{r-1}=$ element of area of ∂K^r . Consequently, the q-th mean curvature of $K^r(s)$ is given by

(8)
$$M_q^n(\epsilon) = \frac{1}{\binom{n-1}{q}} \left[\int_{K^r} \left\{ \frac{1}{R_1}, \dots, \frac{1}{R_q} \right\} \epsilon^{n-r-1} dO_{n-r-1} d\sigma_r + \int_{R^r} \left\{ \frac{1}{R_1}, \dots, \frac{1}{R_q} \right\} \epsilon^{n-r} dO_{n-r} d\sigma_{r-1} \right]$$

where the principal radii of curvature $R_h = R_h(\epsilon)$ have the following values:

a) For the points of the region (A) it is clear that

(4)
$$R_h = s \quad \text{for} \quad h = 1, 2, 3, ..., n - r - 1$$
$$R_h = \infty \quad \text{for} \quad h = n - r, n - r + 1, ..., n - 1.$$

b) In order to find the values of $R_h = R_h(s)$ at the points of the region (B), let us consider at each point x of ∂K^r a frame of n orthogonal unit vectors $\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n$ such that $\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_{n-r}$ be constant (independent of x) and orthogonal to L^r ; $\mathbf{e}_{n-r+1}, \ldots, \mathbf{e}_{n-1}$ be the principal tangents to ∂K^r (as a va-

riety of L^r) at the point x, and e_n be the normal to ∂K^r contained in L^r . The vector equation of $\partial K^r(\epsilon)$ will be

$$\mathbf{X} = \mathbf{x} - \varepsilon \, \mathbf{N}$$

where

(6)
$$\mathbf{N} = \cos \vartheta \, \mathbf{e}_n + \sum_{h=1}^{n-\tau} \cos \vartheta_h \, \mathbf{e}_h \, .$$

For each fixed x, X will describe a (n-r)-sphere and consequently we have

(7)
$$R_h = \varepsilon \quad \text{for} \quad h = 1, 2, 3, \dots, n - r.$$

For $h=n-r+1, \ldots, n-1$, by the equations of Olindz Rodrigues we have

$$d\mathbf{N} \cdot \mathbf{e}_h = -\frac{1}{K_h} dS_h$$

where dS_h denotes the arc element on $\partial K^r(\varepsilon)$ the tangent vector of this arc being parallel to e_h , i. ϵ .

(9)
$$d S_h = d \mathbf{X} \cdot \mathbf{e}_h = d \mathbf{s}_h - \varepsilon d \mathbf{N} \cdot \mathbf{e}_h$$

where ds_h is the arc element on ∂K^r tangent to e_h .

From (6), taking into account that the vectors e_h , for $h=1, 2, \ldots, n-r$, are constant, we have

(10)
$$d\mathbf{N} \cdot \mathbf{e}_h = \cos \theta \ d\mathbf{e}_n \cdot \mathbf{e}_h = -\frac{\cos \theta}{\varrho_{h-n+r}} \ d\mathbf{e}_h \quad (h = n-r+1, \ldots, n-1)$$

where $\varrho_1, \varrho_2, \ldots, \varrho_{r-1}$ are the principal radii of curvature of ∂K^r . From (8), (9) and (10) we have

(11)
$$R_h = \frac{\varrho_{h-n+r}}{\cos \vartheta} + \varepsilon \quad \text{for} \quad h = n-r+1, \dots, n-1.$$

With the values (4) and (7), (11) we can calculate $M_q^n(\epsilon)$ and pass to the limit as $\epsilon \to 0$.

There are three possible cases:

(1) $q \ge n - r$. The first integral in (3) vanishes as $s \to 0$ and the second integral reduces to

(12)
$$M_{q}^{n} = \frac{1}{\binom{n-1}{q}} \int_{\partial K^{r}} \left\{ \frac{1}{\varrho_{1}}, \dots, \frac{1}{\varrho_{q-n+r}} \right\} \cos^{q-n+r} \vartheta \, dO_{n-r} \, d\sigma_{r-1}$$
$$= \frac{\binom{r-1}{q-n+r}}{\binom{n-1}{r-1}} M_{q-n+r}^{r} \int \cos^{q-n+r} \vartheta \, dO_{n-r} \, .$$

The area element of the (n-r)-dimensional unit sphere may be written

$$dO_{n-r} = \sin^{n-r-1}\theta \sin^{n-r-2}\theta_1 \dots \sin\theta_{n-r-2} d\theta d\theta_1 \dots d\theta_{n-r-1}$$

and the integral in (12) must be extended over the half sphere whose pole is the end point of the normal to ∂K^r (contained in L^r). The limits of integration are then

$$0 \le \theta \le \frac{\pi}{2}$$
, $0 \le \theta_t \le \pi$ $(i = 1, 2, ..., n - r - 2)$, $0 \le \theta_{n-r-1} \le 2\pi$

and we have

(18)
$$M_{q}^{n} = \frac{\binom{r-1}{q-n+r}}{\binom{n-1}{q}} M_{q-n+r}^{r} O_{n-r-1} \int_{0}^{\pi/2} \cos^{q-n+r} \vartheta \sin^{n-r-1} \vartheta d\vartheta$$
$$= \frac{\binom{r-1}{q-n+r}}{\binom{n-1}{q}} \frac{O_{q}}{O_{q-n+r}} M_{q-n+r}^{r}.$$

(2) q=n-r-1. The second integral in (3) vanishes as $\epsilon > 0$ and the first tends to $O_{n-r-1}\sigma_r$. Consequently

(14)
$$M_{q}^{n} = -\frac{1}{\binom{n-1}{q}} O_{n-r-1} \sigma_{r}(K^{r})$$

where $\sigma_r(K^r)$ denotes the volume of K^r .

(3) q < n-r-1. Both integrals in (8) vanish as $s \to 0$, and consequently

$$M_q^n = 0.$$

- 2. Examples. For the ordinary space, n=3, we have the following possibilities:
 - a) r=1. K^r reduces to a segment of length s. The mean curvatures are

$$M_0^3 = 0$$
, $M_1^3 = \pi s$, $M_2^3 = 2\pi M_0^4 = 4\pi$.

b) r=2. K^r is a plane convex figure; let s be its perimeter and σ its area. We have

$$M_0^3 = 2\sigma$$
, $M_1^3 = \frac{\pi}{2} M_0^2 = \frac{\pi}{2} s$, $M_2^3 = 2 M_1^2 = 4\pi$.

3. An integral-geometric application. The mean curvatures M_q^n are related with certain invariants H_q^n of K^r which appear in integral geometry. H_q^n $(q=0,1,\ldots,n-1)$ denotes the measure of the set of q-dimensional linear spaces of E^n which have a common point with K^r . Analogously, if K^r is contained in L^r , then H_q^r $(q=0,1,2,\ldots,r-1)$ denotes the measure of the set of q-dimensional linear spaces of L^r which intersect K^r . The invariants M_q^n and H_q^n are related by (see $[^n]$, p. 183).

$$H_q^n = \frac{O_{n-1} O_{n-2} \dots O_{n-q-1}}{2(n-q) O_{q-1} O_{q-2} \dots O_1} M_{q-1}^n \qquad (1 \le q \le n-1)$$

and

$$H_{q}^{r} = \frac{O_{r-1} O_{r-1} \dots O_{r-q-1}}{2(r-q) O_{q-1} O_{q-1} \dots O_{1}} M_{q-1}^{r} \qquad (1 \le q \le r-1)$$

Consequently, in terms of H_q^n , H_q^r the formulae (13), (14) and (15) may be written

$$H_{a}^{n} = c_{rna} H_{a+r-n}^{r}$$

where c_{ran} are the following constants:

$$c_{rqn} = \frac{\binom{r-1}{n-q}}{\binom{n-1}{q-1}} \cdot \frac{O_{n-1} \dots O_{r-1}}{O_{q-1} \dots O_{q+r-n}} \cdot \frac{O_{q-1}}{O_{q-n+r-1}}, \quad \text{for} \quad q \ge n-r+1$$

$$c_{rqn} = \frac{O_{n-1} O_{n-2} \dots O_{n-q-1}}{2(n-q) \binom{n-1}{q-1} O_{q-1} O_{q-1} \dots O_1} O_{q-1} \quad \text{for} \quad q = n-r$$

$$c_{rqn} = 0$$
 for $q < n - r$

The formula (16) has been given by Herglotz and Petkantschin (see ['], p. 292); however they do not give the explicit values of the constants c_{rqn} .

Examples .

$$c_{11} = \frac{O_1 O_0}{2 \cdot 2} = \frac{2 \cdot 2\pi}{4} = \pi, \quad c_{11} = \frac{O_1 O_1}{2O_1 2} = \frac{\pi}{2}$$

FACULTY OF SCIENCES
UNIVERSITY OF BUENOS AIRES
BUENOS AIRES, ARGENTINA

(Manuscript received January 8, 1957)

BIBLIOGRAPHY

[1] B. Petkantschin: Zusammenhaenge zwischen den Dichten der Linearen Unterraeume im n-dimensionalen Kaum, (Integralgeometrie 6), Abhandlungen aus dem

Math. Sem. Hansischen Univ., 11, 249-310, (1936).

[9] L. A. SANTALO : Sur la mesure des espaces linéaires qui coupent un corps convexe et problèmes qui s'y rattachent, Colloque sur les questions de réalité en

Géométrie, 177-190, Liège, (1955).

ÖZET

 E^n , n boyutlu öklidyen uzay ve L^r de bunun lineer bir alt-usayı olsun. L^r nin ihtiva ettiği K^r gibi bir konveks cisim, E^n uzayında, yassı bir konveks cisim gibi düşünülebilir. K^r cismi, L^r içinde tetkik edilecek olursa, (1) formülü ile tarif edilen

$$M_r^n (0 \leq q \leq r-1)$$

ortalama eğriliklerini; E^n nin yassı bir konveks cismi gibi telâkki olunursa, $M_a^n (0 \le q \le n-1)$

ortalama eğriliklerini haisdir. Bu ortalama eğrilikler, K^T cismine, δ uzaklığında çizilen $K^T(\delta)$ dış paralel konveks cisminin $M_q^R(\delta)$ ortalama eğriliklerinin, δ u sıfıra yaklaştırmak suretiyle bulunan, limitleri olarak tarif edilirler.

Bu makalenin gayesi, bahis konusu M_q^r ve M_q^n ortalama eğrilikleri arasındaki bağıntıyı ifade eden (18), (14), (15) formüllerini ispat etmektir. Bunların neticest olarak da Herolotz ve Petrantschin in bir formülü tamamlanmaktadır —formül (16)—.