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ABSTRACT

We compute the mean values of the area a;2._,,, the perimeter hjs ., the number
of arcs wy2.. s, and the number of vertices vyg ., of a typical polygon of the superposition
of m independent random mosaics. Some particular cases are considered. For definitions

and basic formulas see Cowan (1980) and Santal6 (1984).

SUPERPOSITION OF RANDOM MOSAICS

Cowan (1980) defines as characteristics of a random mosaic M, the mean values
of the area a, the perimeter k, the number of arcs w and the number of vertices v of a
“typical polygon” of M (suitably defined).

In Santald (1984) we computed the characteristics of the random mosaic obtained
by homogeneous random superposition of two independent random mosaics M; of char-

acteristics a;, hi, wi, v; (¢ =1,2). The result was

a1y = 2raya; hyp = 2m(arhs + azhy)
2n(ay + a2) + hyhy ’ 2n(a; + az) + hihe
Wiy = 2m(wiaz + waay) + 4hihe (1)
2n(ay + az) + hihy
o1g = 2w (via2 + voay) + 4h1he
2n(a; + a) + hiho
If we superpose m independent random mosaics M; (i =1,2,...,m) of character-

istics a;, h;, w;, v; (always assuming that the superposition is random homogeneous),
we get the following result:

Theorem 1. The characteristics of the random mosaic obtained by superposition of
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m independent random mosaics M;, are the following:
4. m=A0A"127a;...am
Ry..m=AT121{hy |ag...an} -
iy wy..m=AT12x{wy |az...am} + 4{h1h2 | a3...am})
' Vi.m =AT'2r{v; |a2...am} + 4{hih2 | a3...am})
where
| ' A=2r{a;...am-1}+ {h1khz2las...an}

and { } indicates “symmetric functions”, i.e.

{hilaz...am}=hiaa...am +a1ha...am+ - +a1...am-1hm
{h1h2 |as...am} = hihoas...am + h1ashs...an +---+ay... hn1bhm
{ay...am1}=a1a2... a1 +a1...0m_28m + -+ a2a3...am -
Proof. By induction. For m = 2 the formulas (2) hold, since they coincide with
(1). Assuming that they hold for m mosaics M; applying (1) to the pair of mosaics

P MyUM, U - UM, and M+, a straightforward computation verifies that (2) holds
| for m + 1 mosaics.

CASE OF MOSAICS WITH THE SAME CHARACTERISTICS

If the random mosaics have the same characteristics a, h, w, v the formulas (2)
take the form

am = 4(mA) 1ma® , hm =4A7'wah
W = 4A7! (raw + (m — 1)h?) (3)
Um = 4A7? (7rav +{(m - 1)h2) ,

ot ST

where

A =4ma+ (m—1)h%.

i%sg Consequences. 1. If v =4, we have v,, = 4 for any m.
2. For m — oo we always have v,, — 4.
e Examples. 1. For Poisson random mosaics (Miles, 1970; Santald, 1976, p.57) we have

a=4/rA?, h=4/) w =v =4 and (3) gives am, hm, Wm, Vm. For instance, we have
Wm = Uy = 4 for any m.

2. For random mosaics of Voronoi type of the same characteristics, we have (Miles,

1970; Santald, 1976, p.57), a = 1/A, h = 4/AY/? w = v = 6 and we have

__8(m-1)
T+ 4(m —1)

Wy = Uy =
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which is a decreasing function of m, from 6 to 4.
3. For random mosaics of Delaunay type, see Miles (1970), we have a = 1/2A, h =
32/97/A, w = v = 3 and we get

322(m — 1)
322(m ~ 1) 4+ 16273 °

Wy = Uy =3+

4. Consider the regular mosaics of equilateral triangles (w = v = 3), squares (w =v =
4), regular hexagons (w = v = 6), or any affine transforms of them. By uniform random
superposition of m such mosaics we get, respectively (according to (3)),

4ra
4ma 4+ (m — 1)h?
Wm = vy (parallelograms) = 4

Wy = Uy, (triangles) =4 —

+ 8Ta

4ma + (m —1)R?’
i.e. the mean number of vertices (equal to the ‘mean number of sides) of a typical
polygon is less than 4 for the superposition of triangular mosaics, equal to 4 for the

superposition of mosaics of parallelograms and greater than 4 for the superposition of

Wm = v (hexagons) = 4

mosaics of hexagons. This gives a criterion for recognising if a given random mosaic
is the result of superposition of mosaics of triangles, parallelograms or hexagons. Of

course, the condition of w or v being less, equal or greater than 4 is only a necessary
condition, not sufficient.

MOSAICS OF RECTANGLES

Formulas (1) apply to the mosaics obtained by random superposition of m non
random mosaics (tessellations, i.e. arrangements of congruent polygons fitting together
so as to cover the whole plane without overlapping). Then a;, h;, w;, v; are the area,
the perimeter, the number of sides and the number of vertices of a polygon of the
mosaic. The mosaics can be assumed moving in the plane without deformation with
the kinematic density of integral geometry (Santalé, 1976).

Consider, for instance, the case of m mosaics M; of congruent rectangles of sides
8i, Ai (1 =1,2,...,m) (formed by lines parallel to the z-axis at distance §; apart and
the lattice of orthogonal parallel lines at distance ); apart). Then we have

ai=6Xi; hi=206+X), wi=v;=4

and for the mosaic obtained by random superposition of them we get

a12..m (rectangles) = TA™Y6; ... 6p )1 ... Am
hia..m (rectangles) = 27rA"1{(61 + A1)b2Ag ... 6,,,)\,,,} (4)

W1g..m = Vi2..m (rectangles) = 4,
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where

A (rectangles) = 7!'{61)\1 e 6,,1_1 )‘m—l} 2{(51 + Al)(éz + /\2)63A3 . 6mAm} .

For congruent mosaics of rectangles of sides §; = §, A\; = A we have

T62A?
améA + m(m — 1)(6 + A)?
2m(6 + A)6A
wéA+ (m—1)(6 + X)?

wi...m = V1,.m {congruent rectangles) = 4 .

aj..m (congruent rectangles) =

hi..m (congruent rectanges) =

For mosaics of squares of side § we have A = § and thus

(squares) n§?

m u =

Hm SARAEeS) = ¥ 4m{m — 1)
4né

hy...m (squares) = Y m =)

W)..m = V1..m (squares) = 4.

If Ay, A2,..., Am — oo the mosaics of rectangles tend to lattices of parallel lines at

distances 61,82,...,6m apart. Then, from (4) we deduce the following.

Theorem 2. If m lattices of parallel lines at distances 61, 6,,...,6,, apart are super-

posed independently at random, the resulting random mosaic has the following charac-

teristics
a1..m (parallel lines) = nA™16, ... 6m
hi..m (parallel lines) = 2r A1 {8, ... 6m}
Wy..;m = V1..m (parallel lines) =4,
where

A=2(66...6m}.

If the parallel lines are the same distance apart for all lattices, we have 6§; = §;, =

o=, =86 and so

52
ai..m (equidistant parallel lines) = —1;1(:;—_1)
.1 . 2mwé
hi..m (equidistant parallel lines) = 7
m —

Wi..m = V1...m (equidistant parallel lines) = 4 .
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