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Horocycles and Convex Sets in Hyperbolic Plane

By
L. A. SANTALS

1. Introduction. The study of the integral geometry in hyperbolic plane was
carried out in [2]; see also [3]. However, the basic elements there considered were
only points, lines and sets of congruent figures. The horocycles were not considered,
in spite of the important role they play in hyperbolic plane geometry. The purpose
of the present paper is to fill this gap, by defining a density for sets of horocycles
and obtaining the integral formulae (3.2), (4.1), (56.8), (5.11) which generalize to
horocycles certain known formulae for convex sets and straight lines. As usual in
integral geometry, we call “‘density’”’ any differential form whose integral gives an
invariant measure under the group of hyperbolic motions.

2. Density for horocycles. In terms of the polar coordinates r, @ the line element
of the hyperbolic plane has the form

(2.1) ds? = dr2 4 sinh2rdgp?

and the area element is
2.2) df =sinhrdr A dg.

Let C be a circle of radius R and center C, (r, @). Denoting by o the distance from
the origin of coordinates O to C, the area element corresponding to C; will be dCy =
= sinh (p + R) dg adgp if O is exterior to C and dC)=sinh (R —p)dpadp if O is
interior to C. ]

By fixed R, the product f(R)dC; is invariant, for any f(R), by the group of
hyperbolic motions and therefore it can be taken as a density for sets of circles of
radius R. As R — oo the circle C tends to the horocycle H (g, ) and in order that
f(R) dC, approaches to a limit ( +0, co) we must take f(R) such that f(R) e® — a,
@ being a constant which for simplicity we assume equal to 2. Then, if we denote
by dH, the density for horocycles which turn the convexity towards O and by dH_
the density for horocycles which turn the convexity towards the opposite sense,
we have

(2.3) dH, =etdg ndp, dH_=eedondyp.

This density, that we will denote indistinctly by dH, is uniquely determined, i.e.
it is unique, up to a constant factor, which is invariant under the group of hyperbolic
motions, as follows from the way we have obtained it.
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3. Horocycles which intersect a curve. Let @ be a rectifiable curve of length L.
Then, the so-called Poincaré’s formula of the integral geometry applied to @ and to
the circle C of radius R writes [2] (having into account that the length of € is 2xsinh R)

(3.1) J'ndCl =4Lsinh R

where 2 is the number of intersection points of @ and C, the integral extended over
the whole hyperbolic plane, n being zero if @ and C do not intersect. Multiplying
(3.1) by 2e~® and letting R tend to infinity, we get

(3.2) fndH =4L

where n is now the number of intersection points of @ and the horocycle H, the
integral being extended over all horocycles of the plane.
Notice that (3.2) does not change if horocycles are substituted by oriented lines [2].

4. Horocyeles which interseet a h-convex set. A set of points K in the hyperbolic
plane is said to be convex if for each pair of points A, B belonging to K, the entire
segment of straight line 4 B also belongs to K.

A set of points A is said to be h-convex or convex with respect to horocycles, if
for each pair of points A, B belonging to K, the entire segments of the two horocycles
A B also belong to K.

Two points A, B of the hyperbolic plane determine two horocycles H, H’ which
contain these points. If K is h-convex the whole lune bounded by H and H' belongs
to K and therefore the line segment 4 B also belongs to K, i.e. any h-convex set is
convex. The converse is not true, as is immediately shown by any convex set con-
taining a line segment in its boundary. Since the curvature of the horocycles is equal
to 1, it is clear that any convex set bounded by a smooth curve of curvature greater
or equal than 1 at every point is A-convex.

Since the set of support horocycles (likewise as the set of support lines) of a A-
convex set is a set of measure zero, by applying (3.2) to the boundary of K we will
have n = 2 up to a set of zero measure, and therefore we get

(4.1) { dH=2L.
HNK +9

Thus we have: the measure of the set of horocycles which intersect a h-convex set K
18 equal to 2 L, where L s the length of the boundary of K.

5. Density for pairs of points and integral formula for chords. Let K be a convex
set of the hyperbolic plane and let d@ represent the density for lines. If ¢ denotes
the length of the chord that G determines on K, i.e. the length of the intersection
G N K, the following formulae are known [2],

(6.1) fudG:nF, j'sinhadG=:zF+§F2
GNK +9 GNK +0

where F is the area of K.
In the euclidean plane the first formula (5.1) holds without change, while the
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second gives rise to the so-called Crofton’s formula for chords, which writes (2]

(5.2) [ o3dG =3F2,
GNE +¢

We wish now to seec what happens in the formulae (5.1) when lines are substituted
by horocycles. In order to do that we need a formuia which gives the product dPyAd Py
of the densities of two points P;, P, (arca elements at P;, Pg) in terms of the
density dH of a horocycle H determined by those points and the diiferentials diy,
dts of the abscissae {3, tz of Py, Py on H.

Let us consider first a circle C' (of center Ci(p, ) and radius RE) which passes
through P,(r1, ¢ + ¥1), Pa(rz2, ¢ + p2) (Fig. 1).

Fig. 1

If 6, denotes the angle which forms the radius C; P, with the line OC; and o,
the angle between OC) and OP,, by well known formulae of hyperbolic geometry
[1, p. 237] we have

coshry = cosh R cosh g +- sinh R sinh g cos 0y,
sin y; 8inh 7} = sinh Rsin 6, .
Differentiating we get
(6.3) sinhr;dry = (cosh Rsinhg + sinh R cosh g cos 1) dp — sinh Rsinh gsin 6,d6,,
cos ) sinh ry dyy -+ siny; coshrydry = sinh Rcos 0,d0; .
The last equation can be written

(6.4) cosyy sinhr;d(y; -+ ¢) + siny; coshrydr; =
= sinh R cos 0, d0, + cosyysinhridg.

Exterior multiplication of (5.3) and (5.4), putting

dP, = sinhrydry A d(y1 + @) = area element at P;,
gives
sinhrycosydP; =
= (cosh R sinh g + sinh R cosh g cos 01) (sinh R cos 01 dp » df; + cosyysinhrydp A de)
— ginh R sinh g s8in 0; cos p; sinhr;d6; A dep.
35
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An analogous formula holds for P; and by exterior multiplication we get

(6.5) ginhry sinhry cosy) cosyad Py A dPy =
== [8in 6 cos 02 cos y; sinh r; (cosh R sinh g + sinh R cosh g cos f;) —
— 8in @3 cos @) cos ys sinh rg (cosh R sinh g + sinh R cosh g cos 64)] X
x 8inh2 RdC A d6; A dby,

where dC) = sinhpdp A dgp is the area element corresponding to C.
By a known formula of hyperbolic trigonometry we have, for ¢+ = 1, 2,

sinh r¢ cos y; = cosh R sinh ¢ + sinh R cosh g cos §;

and therefore, (5.5) gives
(5.6) dPl A sz = |sin(02 —_ 01)| sinh? RdCl A d01 A d02

where we have put |sin(6; — ;)| since we always consider the densities in absolute
value.

Instead of the angles 6;, @2 we can introduce the abscissae ¢y, t; of Py, Ps on the
circumference of C related by the equations

dt; =sinh Rd0;, dtz =sinhRdB;, t; —t = (02 — 0;)sinh R

Substituting in (5.6) and letting R tend to infinity, since 2e-2dC, — dH = density
for horocycles, we get

5.7) dPll\dP2=|!2——llldHAdlll\dl2.

This formula is the same as the formula for pairs of points in euclidean plane [3]
and therefore, integrating over all pairs of points inside a h-convex set K, we obtain

(6.8) | o%dH =6 F?

HNK +9
where o is the length of the chord H N K, assumed K h-convex. This formula (5.8)
differs from the formula (5.2) for chords in euclidean plane by a factor 2, due to the
fact that two points determine two horocycles.

A kind of dual formula is obtained from {5.6) if we consider P,, P, as centers of
two circles of radius R and let B — oo. Then we get two horocycles Hy, Hy which
intersect at the point C); under the angle 02 — 0, and the differential formula
(5.9) dH1 A ng = ]sm(Oz — 01)| dCl A d()l A dez
holds.

This formula (5.9) does not change if horocycles are substituted by lines [2] and
has the same form as in euclidean plane {3].

In order to generalize the first formula (5.1) to horocycles, let us integrate both
sides of (5.9) over all the pairs of horocycles which intersect each other in the interior
of a domain K (not necessarily convex) of area F. Since there are two horocycles
tangent to a given direction at a point, the right side gives

(5.10) 4j'd01j"j|sin(oz—01)|dolAd02=8nF.
16K 00
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In this computation, if the horocycles Hy, Hs have two intersection points in K,
the pair H;, H; has been counted two times. Therefore if we call g; the length of
the arc of H; which belongs to K, in accordance with (3.2) the integral of dHy over
all H, which cut H; in a point of K, is 40;. Thus the integral of the left of (5.9) is
4 f o1dH,. Equating to (5.10) and writing ¢ and H in place of ¢ and H;, we get

(5.11) [odH =2xF
HNK +9

which is the generalization we wish to obtain. Note that in (5.11) K is not necessarily
convex.
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