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Horocycles and Convex Sets in Hyperbolic Plañe 

By 

L. A. SANTALÓ 

1. Introduction. The study of the integral geometry in hyperbolic plañe was 
carried out in [2]; see also [3]. However, the basic elementa there considered were 
only points, linea and aets of congruent fígurea. The horocycles were not conaidered, 
in apite of the important role they play in hyperbolic plañe geometry. The purpose 
of the preaent paper is to fill this gap, by defining a density for seta of horocyclea 
and obtaining the integral formulae (3.2), (4.1), (5.8), (5.11) which generalize to 
horocyclea certain known formulae for convex aeta and atraight Unes. Aa uaual in 
integral geometry, we cali "denaity" any differential form whoae integral gives an 
invariant measure under the group of hyperbolic motions. 

2. Density for horocycles. In terma of the polar coordinatea r, ç> the Une element 
of the hyperboUc plañe haa the form 

(2.1) ds^^dr^ + Binh^rdtpi 

and the área element ia 
(2.2) df = ainh r dr A d<p. 

Let C be a circle of radiua R and center Ci (r, ¡p). Denoting by Q the distance from 
the origin of coordinatea OtoC, the área element correaponding to Ci will be dCi = 
= 8inh {Q + R)dQ Adf if O ÍB exterior to C and dCi = ainh {R —Q)dQ Adf if O ia 
interior to C. 

By fixed R, the product f(R)dCi is invariant, for any f{R), by the group of 
hyperbolic motiona and therefore it can be taken aa a denaity for aets of ciroles of 
radiua R. AB R -> oo the circle C tenda to the horocycle H (g, <p) and in order that 
f(R) dCi approaches to a limit ( +0, oo) we muat take f(R) auch that f{R) e* ->o, 
o being a conatant which for simplicity we aaaume equal to 2. Then, if we denote 
by dH+ the density for horocycles which tum the convexity towards O and by dH-
the density for horocycles which tum the convexity towards the opposite sense, 
we have 

(2.3) dH+ = eedQ Ad(p, dH- = e-odg Adq). 

This density, that we will denote indiatinctly by dH, is uniquely determined, i.e. 
it ia unique, up to a constant factor, which is invariant under the group of hyperbolic 
motions, as follows from the way we have obtained it. 
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3. Horocyclcs which intorsect a curve. Let Ç be a rectifiable curve of length L. 
Then, the so-called Poincaré's formula of the integral geometry applied to Q and to 
the circle C of radius R writes [2] (having into account that the length ofC is 2;r8Ính/?) 

(3.1) JndCi = 4Lsinh/ í 

where n is the number of intersection points of Q and C, the integral extended over 
the whole hyperbolic plane, n being zero if Q and C do not intersect. Multiplying 
(3.1) by 2e~^ and letting R tend to infinity, we get 

(3.2) jndH = 4L 

where w is now the number of intersection points of Q and the horocycle / / , tho 
integral being extended over all horocycles of the plane. 

Notice that (3.2) does not change if horocycles are substituted by oriented Unes [2]. 

4. Horocycles which intersect a A-convex set. A set of points K in the hyperbolic 
plane is said to be convex if for each pair of points A, B belonging to K, the entire 
segment of straight line A B also belongs to À'. 

A set of points A' is said to be A-convex or convex with respect to horocycles, if 
for each pair of points A, B belonging to À', the entire segments of the two horocycles 
A B also belong to À'. 

Two points A, B o{ the hyperbolic plane determine two horocycles // , H' which 
contain these points. If A' is A-convex the whole lune bounded by H and H' belongs 
to A' and therefore the line segment AB also belongs to K, i.e. any A-convex set is 
convex. The converse is not true, as is immodiately shown by any convex set con-
taining a line segment in its boundary. Since the curvature of the horocycles is equal 
to 1, it is clear that any convex set bounded by a smooth curve of curvature greater 
or equal than 1 at every point is A-convex. 

Since the set of support horocycles (likewisc as tho set of support Unes) of a h-
convex set \s a set of measure zero, by applying (3.2) to the boundary of K we will 
ha ve n = 2 up to a set of zero measure, and therefore we get 

(4.1) J" dH = 2L. 

Thus we have: the measure of the set of horocycles which intersect a h-convex set K 
is equal to 2L, where L is the length of the bouiídary of K. 

5. Density for pairs of points and inte^al formula for chords. Let Khe & convex 
set of the hyperbolic plane and let dO represent the density for lines. If a denotes 
the length of the chord that 0 determines on A', i. e. the length of the intersection 
0 r\ K, the following formulae are known [2], 

(5.1) J adQ = 7iF, j sinhadG = 71 F+iF^ 

where F is the àrea of K. 
In the euclidean plane the fírst formula (5.1) holds without change, while the 
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sccond gives rise to the so-called Crofton's formula for chords, which writes [2] 

(5.2) S a3dO = 2F2. 

We wish now to sec what happens in the formulae (5.1) when lines are substi tuted 
by horocycles. In order to do t h a t we need a formula which givcs the product dPi ^dP2 
of the densities of two points 7 ' i , P2 (arca elements a t Pi, P2) in terms of the 
density dH of a horocycle / / determincd by those points and the iliíferentials dti, 
dt2 of the abscissae <i, <2 of Pi, P2 on H. 

Let us consider first a circle C (of center CI{Q, q>) and radius K) which passes 

through Pi(ri, <p + v i ) , P2(r2, (f + V2) (Fig. 1). 

Fig. 1 

If 61 denotes the angle which forms the radius CiPi with the line OCi and ípi 
the angle between OCi and OPi, by well known formulae of hyperbolic geometry 
[1, p. 237] w e h a v e 

cosh r i = cosh R cosh Q -f- sinh R sinh Q COS di, 

sin y i sinh r i = sinh ü sin 0 i . 

Diflferentiating we get 

(5.3) sinh fi a r i = (cosh R sinh Q -\- sinh R cosh Q COS 0i) dq — sinh R sinh qúnBiddi, 

COS y i sinh fi dy i + sin y i cosh r i dri = sinh i? cos d d S i . 

The last equation can be written 

(5.4) cos \pi sinh ri d (yi + 99) + sin \pi cosh r i dri = 

= sinh R cos Oi dOi + cos y i sinh r i d(p . 

Exterior multiplication of (5.3) and (5.4), put t ing 

dPi = sinh ri dri A d {ipi + 99) = àrea element a t P i , 

gives 
sinh fi cos ipi dPi = 

= (cosh R sinh Q + sinh R cosh Q COS OI) (sinh R cos Oi dç A dOi + cos ipi sinh r i dp A dcp) 

— sinh ü sinh g sin 61 cos ipi sinh r i dOi A d<p, 

35* 
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An analogous formula holds for P2 and by exterior multíplication we get 

(5.5) sinh ri sinh r2 cos xpi cos ̂ 2 dPi A dPz = 

= [sin 01 cos 62 cos y/i sinh ri (cosh R sinh Q -\- sinh R cosh p cos 62) — 
— sin 02 cos 01 cos ̂ 2 sinh r2 (cosh R sinh p + sinh R cosh p cos 0i)] x 
X ành^RdCi A d0i A d02 , 

where dCi = sinh çdç A dtp is the àrea element corresponding to Ci. 
By a known formula of hyperbolic trigonometry we have, for t = 1,2, 

sinh u cos fi = cosh R sinh p + sinh R cosh g cos 0< 

and therefore, (6.5) gives 

(5.6) dPi A dPz = I sin (02 - 0i) | sinh2 R dCi A d0i A ¿02 

where we have put | sin (02 — 0i)| since we always consider the densities in absoluto 
valué. 

Instead of the angles 0i, 02 we can introduce the abscissae í i , Í2 of Pi, P2 on the 
circumference of C related by the equations 

dii — sinh R dOi, dt2 = sinh R d02 , h — h = (02 — 0i) sinh R . 

Substituting in (5.6) and letting R tend to infinity, since 2e~"dCi -> dH = density 
for horocycles, we get 

(5.7) dPi A dP2 = IÍ2 - íi I d/^ A á<i A d<2 . 

This formula is the same as the formula for pairs of points in euclidean plane [3] 
and therefore, integrating over all pairs of points inside a A-convex set K, we obtain 

(5.8) J" a^dH = 6F2 
nr\K*9 

where a is the length of the chord H r\ K, assumed K A-convex. This formula (5.8) 
düFers from the formula (5.2) for chords in euclidean plane by a factor 2, due to the 
fact that two points determine two horocycles. 

A kind of dual formula is obtained from (5.6) if we consider Pi, P2 as centers of 
two circles of radius R and let R ^>- 00. Then we get two horocycles Hi, H2 which 
intersect at the point Ci under the angle 02 — 0i and the differential formula 

(5.9) dHi A dH2 = I sin (02 - 0i) | dCi A d0i A d02 

holds. 
This formula (5.9) does not change if horocycles are substituted by Unes [2] and 

has the same form as in euclidean piane [3]. 
In order to generalize the ñrst formula (5.1) to horocycles, let us intégrate both 

sides of (5.9) over all the pairs of horocycles which intersect each other in the interior 
of a domain K (not necessarily convex) of àrea F. Since there are two horocycles 
tangent to a given direction at a point, the right side gives 

(5.10) 4 j d C i J J | 8 i n ( 0 2 - 0 i ) | d 0 i Ad02 = 8 ; r f . 
CicJT 0 0 
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In thifi computation, if the horocycles Hi, H^ have two intersection points in K, 
the pair Hi, H2 has been counted two times. Therefore if we call ffi the length of 
the arc of Hi which belongs to K, in accordance with (3.2) the integral of dHz over 
all Hz which cut Hi in a point of /f, is 4<ri. Thus the integral of the left of (5.9) is 
4 (oïdHi. Equating to (5.10) and writing a and H in place of ai and Hi, we get 

(5.11) jadH = 2nF 
HCiK*» 

which is the generalization we wish to obtain. Note that in (5.11) K is not necessarily 
convex. 
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