RANDOM PROCESSES OF LINEAR_SEGMENTS AND GRAPHS
L. A. Santalé

SUMMARY

By a graph G we undexstand a finite set of points {(veatices)
together with the Line segments which unites some pairs of distinct
points of the set. Sets of congruent graphs are consdidered. The po-
s4ition of a graph on the plane is defined by the position of one of
its ventices P and a notation ¢ about P . Assuming P Poisson
distributed on the plane and ¢ unifoamly distributed over 0<¢<
27, we extend to graph processes some known properties of Line seg-
ment processes (Coleman [1), [2] ; Parker and Cowah [3] ). we §ind
the probability that the d{stance §rom a point chosen at random in-
dependently ¢f§ the process of graphs to the nearest veratice of a
graph or to the neanest graph exceeds u . Some of the resulis are
also extended grom the euclidean plane to surfaces lsets of geo-
desdic segments and sets of geodesdic graphs), foxr instance to the
sphere and to the hypeabolic plane. )

1. INTRODUCTION

An oriented line segment S of length s , may be defined on the
plane by its origin P(x,y) and the angle ¢ that it makes with a
fixed direction, for instance with the x-axis. If the length s is
random variable with probability density function f(s), so that

(1.1) S f(s) ds = 1 , S s f(s) ds = E(s)

(1 : 0 : _
fhe density for sets of uniformly distributed oriented line segments
is defined by any one of the following equivalent differential forms

[

(1.2) ' dS =-f(s) dsAadPAd¢. = f(s) dsadGAdt

‘where dP  means the arca element at P , dG is,the density for
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oriented straight lines (corresponding to the line that contains S)
ahd t denotes the abscissa of P on -G . The densities are always
considered in absolute value, so that the order of the differentials
in the forms above is inmaterial. ATl the lengths and orlentatlons
of the segments are mutually independent.

With these assumptions, Coleman [l] [2] and Parker and Cowan [3]
have considered random processes of line segments on the plane of
intensity 2 ‘(mean number of points P per unit area). Though Par-
ker and Cowan have. considered more general processes, we shall assu-
me, following Coleman, that the process of points P 1{is & homogene-

ous Poisson process of irtensity A . We state some of their results:

i) The probability that the distance from a point chosen at ran-
dom independently of the process of line segments to the nearest
origin or end of a line segment exceeds u (0g u<=) is exp(-AH),uhere

2u : :
(1.3) H = 24° (- - S {arc cos(s/2u) - (s/2u)(1-5%74u?)1/2y¢(s) ds).

. 0 ‘
ii) The mean value of the number v of origin or end points of

the line seymznts that are contained in a convex set. K of area F
and perimeter L which is chosen-at random in the plane {(in Fig.1
is v=18), is

(1.4) E(v) = 2aF .

.i1i1) The mean value of the number
m of line segments which have common
point with K {in Fig.1l is m=10), is

(1.5) E(m) = a(F + a7 2E(s)L)

iv) The mean value of the number m*
of intersection points of Iine.segments
with a rectifiable curve of length L
chosen at random on the plane (uniform-
ly distributed and independent of the
process), is

(1.6)  E(m*) = 2xs™ LE(s)L.

Fig.1
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v) The mean,value of the number N of segment-segment crossings
within K (in Fig.1l is }=6), is ' -

(1L.7) . E) =TI (e(s)PF

‘vi) The mean v;lue of the total length within K of segments
which intersect K , is 3 o
(1.8) -£(zai),= AE(s)F.

More generally we can prove that, assuming s . greater than the
diameter of K ,

{ n-1 ’
(1.9) .E(zg;) = h (E(s) - —; In+£>

n+1l

where ln are the invariants of the convex set K defined by

(1.10) I, = Sa“'de

where o 1is. the length of the chord GNK and the integral is ex-
tended over all theg lines G of the plane. :

vii) The probability that the distance from a point Q chosen
at random independently of the process to the nearest line segment
exceeds u (0g u < =) is exp(-aH,(u)), where

(1.11) Hy(u) = 202 + 20E(s) .

These results can.be extended in three.different dirvections: 1.
Extension to random figures other than line segments; 2. Extension
from the euclidean plane to other surfaces, for instance the sphere
or the hyperbolic plane,_3. Extension from the euclidean plane E2 to
the euclidean space E, -

In this paper we will be concerned with the cases 1 and 2 . The
extension to E_ presents a great deal of possibilities and will be
considered elsewhere.

2. FIRST EXTENSION: SETS OF RANDOM GRAPHS.

2.1 Definitions and some mean values. A graph ‘T consists of a
finite noﬁ‘empty set of points (vertices).together with a prescribed
set of line segmehts (arcs) which join some pairs of vertices. Let

v be the number of vertices and h the number of arcs. We consi-

A
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der set$ of similar gfaphs, i.e. graphs which can be mapped one

tor another by a similitude, and we will denote by s the scale
factor of the similitude. The lengths of the arcs are denoted by
sal, saz....,sah, so that the total 1ength of the graph is A=s(a1+
: a2+;..+ah). o , , '

A graph’' T ’'is defined in the plane, up to an isometry, by one
of its vertices, say P(x,y) , the scale factor s and a rotation
about P through the angle é . We will consider sets of inde-
pendent random graphs such that P is uniformly distributed on
the plane with intensity 1 (number of points P ~per unft area),

¢ is uniformly distributed over the range 0g¢<2n , and the sca-
le factor s has a prpbability density function f(s) which sa-
tisfies conditions (1.1). This means that the so called density
for sets of graphs is the differential form (1.2), which we now
write ‘

(2.1) | dT = f(s) dsAdPAds

The mean léngth of the graphs T is E(A) = (a1+a +...+ah)E(s).b

Applying that the expectation of the sum is the sum of expecta--
tions (provided they exist), some of the mean values of the Intro-
duction generaliie immediately to random graphs. For instance: -

a) Denoting by v the number of vertices which are contined 1nA'
a convex set K of area. F and perimeter L placed at random
on the plane, we have ’ ' '

(2.2) . . E{v) = avF ;

b) The mean value of the number m* of interséction points of
a rectifiable curve of length L placed at random 6n the plane, with
- the arcs of the graphs, {is

(2.3) CE(m*) = 227 1) E(A) L
which'genera]izes'(l.ﬁ).

c) The mean value of the total length within K of arcs that
fntersect with a convex set- K placed at random on the plane, is

(2.4) E{zA;) = 2 F E(A) ,
which generalizes (1.8).
d) The mean value of thg number- N of arcs-arcs of graphs cro-

ssing within a convex set K , is
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(21.5) ' E() = 271 2% (e(A)2 F .

2.2 The distribution of the distances. from a given point to
the nearest vertex of a random process of qraphs. For simplicity,
‘we shall consider now a process of isometric graphs. We will repre-
sent the len?ths of the arcs by a; , so that the total length is

.A=a1+a2+...+ah . Round each vertex of the graph T we cons;ruct

Fig.2

a disc of radius u (Fig.2) . Let Di' (i=1,2,...,v) be the set
of those points which are covered exactly by i discs and let Fi
denote its area. Assuming that F,, Fy,...,F_ are # 0 and that -

Fm+1°“‘=Fv =0 , we put

n

. A _-2 ) }
(2.6) F=F1+F2+...+Fm = Uy - F2 - 2F3 -...-(M*I)Fn-

The functions F*‘u) are char;cteristics of the graph. It should
be interesting to know until which extent they determine T .

Consider n random graphs (with the discs included) which have
the vertex P inside a large disc of radius R . The probabili;y
that a chosen point Q of the disc (sufficiently far from the boun-

dary) be covered exactly by r; sets D;, r, sets.D,,..., r sets
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. .

D (n;zri, i21,2,0.,,m) is (muliinomial distribution)

»

_ n 4 FNYT L F NV F\"Ery
(2.7) pi“f..r - — '(%-l)~ ,..(—Ji) 1 --—;) :
_ 1 Cm rl.,,frm.(n-zri), Fo Fo Fo

where Fy = <R . If n and R ~+ = in such a way that n/F,
+ A (number of graphs per unit area), the probability tends to the
limit - ”

COF)" GF )'m
(2.8) b, . . =T——— ... — B exp(-aF)
1°"°*'m rlf‘ rm: . .

which is a multiple Poisson distribution. The obtained process is
called a Poisson graph process of intensity A . Thus we have pro-
ved that ' '
Considen a Poisson process of congruent graphs T of £ntén6£ty
A . The probabifity that the distance from a point ¢ chosen
at nandom independently of the process to 4 ventices of Ay araphs
(£=1,2,...,m) does not exceed u L& given by (2.8). o
In particular, the probability that the distance from Q to the
nearest vertex exceeds u , is \ ' B

'(2.9). : " Po...0 = exp(-AF).

The function F(u) is in general difficult to calculate. By a
direct computation, we can find: -

a) If T is a line segmeﬁt of length a , we have,

(2.10) - F = zul if a3 2u

F=2u2(n arc cos(a/2u) + (a/2u)(1 - a2/4u

2)_1/2} if ag2u

b) If T is a rectangle of sides a, b such that bza , we
have (Fig.3,a,b,c,d), o
(2.11)  F = 42u? if - 2uga ;

F=4u2{=i arc cos(a/2u) + (a/2u)(15a2/4u2)1/2}

if ag2usghb ;
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Fig.3, b)

Fig.3, ¢) Fig.3, d)

|

F = 4u2{n- arc cos(a/2u) - érc.cos(b/ZU) + (a/2u)(1 -'a_2/11,uz)1/2
+ (br2u)(1 - b27au?)V2)  §f bezuc(aZen?)/2
F = 2u2{(3/2)x - arc cos{a/2u) - arc cos(b/2u) + (a/2u)(1l -“a2/4u2)

+ (b72u)(1 - b274u)V2 4 aps2u?y i (aZep)V2 ¢ py .

c) If T s an equilateral triangle of side a , we have
(Fig.4, a, b, c)
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F=3aul if € a/2

]

F = 6uzarc sinf{a/2u) + 3au(l - 32/4u2)1/2 if a/2 ¢ u ga//3;

F =nu2 + 3ularc sin(a/Zu)+(-/3/4)a2 + (3/2)au(} - azlduz)ll2
if a/¥3 g u .

Fig.4, b) - Fig.4, c)

_ 2.3 The distribution of the distance from a given point to the
nearest graph. ‘Let F*(u) be the area of the set of points whose
distance to T s &u . This function F*(u) is also a characte-
ristic of T . Proceding as before we have that

The phobability that the distance §rom a point Q chosen at ran-
dom independently of the process of graphs, Lo Lhe nearest graph
exceeds u L& expl-aF*), ’ _ B

The function F*{u) must be calculated for each particular gfaph.
For instance, by direct computation, it is easy to obtain the follo-

wing results: : B ' '
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a) If T is a lihe-segment of length a , we have

F*{u) = nuz + 2ua

b) If T ‘is'a rectangle of sides a, b such that b a ,
we have (Fig.5, a, b): :

F*(u) = 4{(a + b)u + nuz - 4u2 . if = 2v € a;

‘F*(u) = 2(a + b)u + nuz + ab if ag 2u .

7

NN

Y

" Fig.5, a) Fig.5, b)

c) If T .is an equilateral triangle of side a , we have
(Fig.6,a, b) ’ '

Fr(u) = =ud - 3/3 u® + 6au , if u< a/2’3

, if a/2/3 g u.

F*(u) = 3au + 24 + (/374) a2
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3. SECOND EXTENSION: SETS OF GEODESIC SEGMERTS OH SURFACES.
L]

3.1 Sets of geodesic seqments which intersect a convex set.
The density for geodesic segments 'S on a surface £ (riemannian
space of dimension 2) is given by the same formula (1.2), where
now dG stands for the density of geodesic lines of the surface
(see [4] ). A bounded set of points K on the surface is called
convex if every geodesic has at most two points in common with the
boundary éK, exceptimg geodesics which have an entire segment
which_belongs to 3K . Let D be the diameter of K . If the sur-
face ¢ has closed geodesics and their minimal length is Lg» we
will consider only segments whose maximal length Sy satisfies
the inequality Coe

(3.1) ’ D+ Sp € L .

That means that f(s) =0 for s » Sm - -

With these conditions, the measure of the set of oriented geode-
sic segments which intersect a fixed convex set K of area F and
perimeter L , is [ﬂ

(3.2) o (as = 20F + 26(s)L .
SNK# P

and denoting by v the number of extreme points (origin or end points)
of the segnents S intersecting X which are within K , we have

(3.3) | Sv ds = 4aF .

Let S be a segment waich interseét K and let o denote. the
length of the part of S within K . Consider the integral

(3.4) ' 3 = gdGAdS
extended over all pairs (6,5) such that GANASE€ K . If we first:
leave § fixed, we have J; = 4 ja dS and if we first leave. G

fixed and o denotes the length of the chord GNK , we have 4y =

4E{s) \¢ d6G = 83E(s)F (atcording to well known results of Integral
Geometry, see for instance [5] ). Hence, we have

(3.5) Sa ds = 2§E(s)r .
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Consider now two geodesic segments Sl’ S2 which intersect K .
* Let n;, denote the function which is equal to 1 if S;NS,EK
and is,equal to zero otherwise. Consider the integral

(_3.6) | "2 = 5n12 dSlAdSZ.
extended over all pairs such that slr\sz #F0 (i=1,2) . If oy
denotes the length of the intersection S ﬂ K , integrating first
with respect to S2 we have J2 = 4E(sé) fpldsl » and according
to (3.5) we have ‘ ' '
{3.7) - \ J2 = 8aF E(sl)E(sz)

From (3.2), (3.3), (3.5) and (3.7) we;deduce:

a) The mean value E(v). of the number of extreme points (ori—
gin or end point) within K of n geodesic segments on a surface
I which intersect at random a convex set KX of £, is
2unF ' o

3.8 - E(v) & ————— .
(s-8) . . (v) aF + E(s)L

b) For n _geodesic segments S5 (i=1,2,....n) chosen at random
on the surface t , which intersect a convex set K , the mean value

of the sum of the lengths' ni within K, is

: E(s )
: E(z = F E
'(3.9) - ai) ) aF + E(s )L
If all segments have the same mean length E(s) , we have
: nnFE(S)
: E(Lay) = .
(3.10) ' (rey F + E(s)L

c¢) For n geodesic segments Si 'chosen independently at randqm_
on the surface f -, which intersect a convex set K , the mean value
of the number N of segment-segment crossingslwithin K, is
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- | 2 ‘ Esy)E(s;) -
(3.11) © E(N) = 2xF :
| (F + E(s)L)(nF + E(s;)0)

i<j
If all segments have the same mean length E(s) ., we have
. 2
n({n-1)a7F(E(s))

(3:12) E(N) =
(zF + E(s)L)2

3.Zf Sets of segments on the unit sphere. The measure of all
geodesic segments op the unit sphere has a finite value, namely

(3.13) ds = ) f(s) dsadPade = 8xl .

Total

Hence, from the results above we can state:

a) The mean value of the number of extreme points }origin or
end points) of n random segments chosen independently at random
on the unit sphere, which 1ie within a convex set X , is

. nF
(3.14) O E{v) = -

2:

b) Let K be a convex set_of diameter D on the unit sphere;
Consider a2 random segment whose maximal length satisfies the ine-
quality D+sm$ 2v . Then, the probability that SNK # § , is

' 3 aF + E(s)L ’
(3.15) p(SNK ¢ ) Ere—

4=z

¢) The mean value of the total length within. K of n random
segments Si chosen independently on the unit sphere, is

fl
(3.15) Elzag) = (42)71F D> lsy)
‘ 1
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If al) segments have the same mean length E(s) , we have

‘ . nE(s)F
(3.17) E(Zui) = -——;ﬁj—— .

d) The mean number of segment-segment crossings within - K of
n segments placed independently at random on the sphere is

(3.18) CE() = (87 F § CE(s)E(s;)

j<j
In particular, if all segments have the same mean length E(s),
- we have
n(n-1)(E(s))%F

16n3.

(3.19) - E(N) =

3.3 Sets of segments on the hyperbolic plane. From (3.2), (3.5)
and (3.6) we deduce: '

~a) If K is a convex set interior to a convex set Ky on a
given surface , the probability that a random segment intersec-
ting Ko .‘also intersects K , is

fF + E(S)L
_uro + s(s)Lo

(3.20) = p=

b) If we consider n random segments of the same mean length
E{s) which intersect Kg » the mean value of the total length of
their intersection with K , is ' T
nunE(s)F

+ E(s)!.0

(3.21) \ E(iui) =

and the mean value of the number N of segment-segment crossings
within K , is ' :

-
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: 2
-1)a F
(3.22) E() = iV (EL))TE

(=Fg +,e(s)Lo)2

c) From (3.20) it follows that if there are chosen at random
n segments which intersect KO , the probability that exactly m
of them intersect . K , is

o ga\[ 3F + E(s)L \P :F + E(s)L \ "
(3.23) Pn = ——— 1 - .
o m/\ =Fg+ E(s)L0 7F0+ E(s)L0
Assume that  1is an unbounded surface of infinite area and

Jet Ko expand to the whole surface at the same time that '
in such a way that

‘ n ‘
(3.24) : o — + A (positive constant).

o

Assuming moreover that under these conditions we have

. L .
(3.25) 0 L,
then Pn tends to the limit _
Co(aR)™ sF + E(s)L
(3.26) ~ P = exp(-aH) , H =
) m! . _ ' t + cE(s)

It is known that «x=0 for the euclidean plane and «x=1- for
the hyperbolic plane- [6] The obtained process is called an ho-
mogeneous Poisson segment process of intensity » on I

According to {3.26) the mean number of segments intersected

by a convex set K placed at random on the surface is aH .
Using . (3. 21) and (3.22). we get that the mean value of the to-
tal length within K of segments that intersect with K is

AnE(s)E
‘(3.27) E(fa;) =




)

(3.28)  E{N) =

293

and the number of segment-shgment crqssings within K , is

-

A2u(E(s))F

(n + .<'E_(s))2"v

For the euclidean'plane, k=0 , these results are the wofk of
Parker and Cowan [3] . For the hyperbolic plane we must put x=1 .

d) Comsider the hyperbolic plane, x=1 ., If Dr dehotes the
distance from a point Q chosen at random independently of the
process, to the nearest r-th line segment, the probability that
Dr > u 1is equal to the probability that a disc df radius u placed
at random on the plane intersect no more than r-1 1line segments,

“that s .
: r-1 (XH)m R
(3.29) ‘ p(DE>u) = \ ——exp(~-aH)
' m:
m:

where H is given by (3.26) with

1

(3.30) ¢« =1, F= 2w(cosh u - 1) , L = 2nsinh u .

For r=l we have the'probability that the distance from a point
Q@ chosen at random on the hyperbolic plane to the nearest line
segment is greater than u . Thus, the probability density f@nction
for the distances from Q ¢to the nearest line segment is

(3.31) 2ax(x + E(s))'l(n51nh u + E(s)cosh u) exp{-aH)

with
2n
{3.32) " H =

_-—-—-——-(}(cqshAu - 1) +~E(s) sinh u)
s + E(s) : B

oo

Sunnlied bv The British Librarv - "The world's knowledae"



294

REFERENCES

COLEMAN, R. Sampling procedures for the lengths of random
straight lines, Biometrika, 59, 1972, 415-426.

" The distance from a given point to the nearest -
end of one member of a random process of linear
segments, Stochastic Geometry, ed.Harding and
Kendall, Wiley, London, 1974, 192-201.

PARKER, .Ph. and COWAN, R. Some properties of line segment
processes, J.Applied Probability,13,1976,96-107.

' . - .
SANTALO, L.A. Integral Geometry on surfaces, Duke Math. Jour-
nal, 16, 1949, 361-375. :

" Integral Geometry and Geometric probability, En-
cyclopedia of Mathematics and its Applications,
Addison-Wesley, Reading, Mass. 1976.

- l N ' . .
SANTALO, L.A. and YAREZ, I. Averages for polygons formed

by random lines,in euclidean and hyperbolic
planes, J.Applied Probability, 9, 1972, 140-157.

Facultad de Ciencias Exactas y Naturales
Universidad de Buenos Aires
BUENOS AIRES, Argentina.

-



