
RANDOM PROCESSES OF LINEAR SEGMENTS AND GRAPHS 

L. A. Santa ló 

SUMARY 

Btf a. gKaph 6 loe undeMtand a. l¿n¿tí Att o5 pointi {ve.A.t¿c&¿) 
togíthe.\ uJith the. íine ¿cgmenti ioh¿ch un¿te.i ¿omz paiM oi di^tinct 
pointi oi thz ¿zt. ScXi¿ o¿ congruent gíiaphò anz coni¿d^^e.d. The. po-
¿¿tíon 0|5 o gfiaph on thz piane. ¿6 dz^imd btf thz poiítion o¿ one. oi 
¿tl vzitic&l V and a Aotation ^ about P . Küuming P Po¿66on 
diitfiibutzd on thí ptanz and «¡i un¿ioim¿y d¿¿tA.¿bute.d OVÍA. 0^^< 

2ü, uí zxt&nd to giaph pAocziiZi iomz known pA.opzitíí6 o£ ¿¿m ¿eg-
mínt pioczàòzi [Cotzman [i] , [i] ; Pafikzi and Cotoah [sj ) . l<Jz ¿¿nd 
thz plobabiLLty that thz di^tancz iiom a point choizn at fiandom ¿n-
dzpzndzntly c¿ thz pKOCZ&& o i- gnaphi to thz nzaKzit vzAt'izz oi a 
gAaph oA to thz nzcAZit gfiaph zxczzdi u . Somz oi thz AZiuitò aAz 
atio zxtzndzd ÍAom thz zuclidzan ptanz to ¿uAiaczi {^zti oi gzo-
dziic ¿zgmznti and hztò oi gzodziíc gAaphi), ioK ínitancz to thz 
òphzAZ and to thz hyptAboLíc. planz. 

1. INTRODUCTION 

An oriented line segment S of length s , may be deflned on the 

piane by its origin P(x,y) and the angle ^ that 1t makes with a 

fixed dlrection, for instance with the x-axis. If the length s is 

random variable with probability density function f(s), so that 

(1.1) \ f(s) ds = 1 . J s f(s) ds = E(s) 
0 0 

the density for sets of uniformly dlstributed oriented line segments 

is defined by any one of the following equivalent differential forms 

W 
(1 .2 ) dS = f ( s ) dsAdPAd* = f ( s ) dsAdGAdt 

where dP means the arca element at P , dG is , the density for 
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oriented straight lines (corresponding to the U n e that contains S) 

at)d t denotes the abscissa of P on G . The densities are always 

consldered 1n absolute valué, so that the order of the differentials 

1n the forras above is inmaterial. ATI the lengths and orientations 

of the segments are mutually independent. 

With these assumptions, Coleman [ij, [2] and Parker and Cowan [3j, 

have considered random processes of line segments on the plañe of 

intensity x (mean number of points P per unit área). Though Par­

ker and Cowan have consldered more general processes, we shall assu-

me, following Coleman, that the process of points P is á homogene-

ous Poisson process of intensity x . We state some of their results 

i) The probability that the distance from a point chosen at ran­

dom independently of the process of line segments to the nearest 

origin or end of a line segment exceeds u (0^ u<<») is exp(-xH) ,v/here 

( 2u V 

-.. - J {are cos(s/2u) - (s/2u) (l-s^/4u^)^/^)f (s) dsj . 

i i ) The mean valué of the number v of o r i g i n or end po in ts of 

the l i n e seijni^nts t h a t are conta ined i n a convex s e t . K o f área F 

and per imeter L which i s chosen at random i n the plañe ( i n F i g . l 

i s v=15) , i s 
( 1 . 4 ) E(v) 2XF 

iii) The mean valué of the number 

m of line segments which have common 

point with K (in Fig.l is m=10), is 

(1.5) E(m) = X(F + ^•4(s)L) 

iv) The mean valué of the number m* 

of intersection points of line segments 

with a rectlfiable curve of length L 

chosen at random on the plañe (uniform-

ly distributed and independent of the 

process), is 

(1.5) E(m*) = 2xr^E(s)L. 

Fig.l 
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v) The mean,valué of the number 

within K (in Fig.l is N=6), is 

N of segment-segment crossings 

(1.7) E(rO = . - h ^ ( E ( S ) ) 2 F . 

vi) The mean valué of the total length within K of segments 

which intersect K , is 

(1.8) E(la^) = XE(s)F. 

More generally we can prové that, assumíng s ,• greater than the 

diameter of K , 

(1.9) 

where I 

(1.10) 

E(raJ) = .-lx^E(s) I„ . — . I„,i^ 

are the invariants of the convex set K defined by 

where o is the length of the chord G A K and the integral is ex­

tended over all thg lines G of the plane. 

vi i) The probability that the distance from a point Q chosen 

at random independently of the process to the nearest line segment 

exceeds u (O4 u < ») is exp(-xH,(u)), where 

(1.11) Hj(u) au*̂  + 2uE(s) . 

These results can be extended in three dlfferent directions: 1. 

Extensión to random figures other than line segments; 2. Extensión 

from the euclidean plane to other surfaces, for instance the sphere 

or the hyperbolic plane, 3. Extensión from the euclidean plane E^ to 

the euclidean space E„ . 

In this paper we will be concerned with the cases 1 and 2 . The 

extensión to 

considered elsewhere 

E presents a great dea! of possibilitie$ and will be 

2. FIRST EXTENSIÓN: SETS OF RANDOM GRAPHS-

2.1 Definitions and some mean vàlues. A graph T consists of a 

finite non empty set of points (vértices) together with a prescribed 

set of line segments (arcs) which join some pairs of vértices. Let 

V be the number of vértices and h the number of arcs. We consi-
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der sets of sinilar graphs, i.e. graphs which can be tnapped one 

to>another by a sinilitude, and we will denote by s the scale 

factor of the simi 1 itude. The lengths of the arcs are denoted by 

sa., sap,...,sa. , so that the total length of the graph is A=s(a.-^ 

*'2*··**^h^· 
A graph ' T is defined in the plane, up to an isometry, by one 

of its vértices, say P{x,y) , thè scale factor s and a rotation 

about P through the angle « . Me will consider sets of inde­

pendent random graphs such that P is uniformly distributed on 

the plane with intensity x {number of points P per unit àrea), 

* is uniformly distributed over the range 0̂ if<2ii , and the sca­

le factor s has a probability density function f(s) which sa-

tisfies conditions (1.1). This means that the so called density 

fer sets of graphs is the differential form (1.2), which we now 

wri te 

,j.u2-...+a^)E(s) 

(2.1) dT = f(s) dsAdPAd* . 

The mean length of the graphs T is E(A) = (a|+a2+. 

Applying that the expectation of the sum is the sum of expecta-

tions (provided they exist), some of the nean vàlues of the Intro-

duction generalize immediately to random graphs. For instance: 

a) Denoting by v the number of vértices which are contined in ' 

a convex set K of àrea F and perimeter L placed at random 

on the plane, we have 

(2.2) E(v) = AvF ; 

b) The nean value of the number m* of interséction points of 

a rectifiable curve of length L placed at random 6n the plane, with 

the arcs of the graphs, is 

(2.3) E(m*) « 2^'^X E(A) L 

which generalizes (1.6). 

c) The mean value of the total length within K of arcs that 

intersect with a convex set K placed at random on the plane, is 

(2.4) E(ZA,) = X F E(A) , 

which generalizes (1.8).' 

d) The mean value of the number N of arcs-arcs of graphs Cro­

ssing within a convex set K , is 
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(2.5) E(N) = r ^ x' (E(A))2 F 

2.2 The distrlbution of the. di stances f rom â  gi ven point to 

the nearest vèrtex of a random process of graphs. For simplicity, 

we shall consldcr now a process of isometric graphs. We will repre-

sent the lengths of the arcs by a. , so that the total length Is 

A=a,+a2+.. .+a|, Round each vèrtex of the graph T we construct 

Fig.2 

D. (i=l,2,...,v) be the set a disc of radius u (Fig.2) . Let 

of those points which are covered exactly by í discs and let F-

denote its àrea. Assuniing that Fj, Fg. . ,F are ?í 0 and that 

(2.6) 

,=F„ = 0 , we put 

F»Fj+F2+. ,+F„ = nu'v - F, m Z 2F- ,-(tn-l)F^. 

The functions F,(u) are characteristics of the graph. It shouid 

be interesting to know until which extent they deternine T . • 

Consider n random graphs (with the discs included) which have 

the vèrtex P inside a large disc of radius R . The probability 

that a chosen point Q of the disc (sufficiently far from the boun-

dary) be covered exactly by r. sets D,, r^ sets D^,. r„ sets 

SuDDiied bv The British Librarv - "The world's knowledqe" 



284 

D_, (n»Er., i = l,2,... ,m) is (multinomial distribution) 

2 where FQ " •sR . If n and R -• « in such a way that n/F^ 
•*- X (nunber of graphs per unit área), the probabUity tends to the 
limit 

(XF,)""! (XF^)*"!!, 
(2.8) p„ _ = i .... S! exp{-xF) 

1 " «n r • r „ : 

which Is a múltiple Poisson distribution. The obtained process is 
called a Poisson graph process of intensity X . Thus we have pre­
ved that 

Con&idzA. a Po4A6on pioctii oí cowfl/iucnt gJiaphí> T oí ihtíniity 
X . T/ie pfiobab¿¿¿ty that the. diitancz ¿Aom a point d cho&e.n 

at landom ¿nde.pe.nde.ntty o i the. pioce¿i to í vent¿ce.¿ o¿ x. gAaphi 
{¿'1,2, ,mj doe.0 not txczzd u ¿i, Q¿ve.n by {2.B). 

In particular, the probability that the distance from Q to the 
nearest vértex exceeds u , is 

(2.9) Po.-.O ^ exp(-xF). 

The f u n c t i o n F(u) i s i n general d i f f i c u l t to c a l c ú l a t e . By a 

d i r e c t computa t ion , we can f i n d : 

a) I f T i s a 1ine segment of l eng th a , we have 

(2 .10) ?.= T.ü^ i f a > 2u 

F=2u^{a - are cos (a /2u) + { a / 2 u ) ( l - a^/Au^)^^^} i f a<2u 

b) If T. is a rectangle of sides a, b such that bja , we 
have (Fig.3»a,b,c,d) 

(2.11) F = 4nu^ if 2u^a ; 

F=4U^{:Í- are cos(a/2u) + (a/2u)(l-a^/4u^)^^^} if aí2u<b ; 

SuDplied bv The British Librarv - "The world's knowledge" 
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O-^ 
0-© 

Fig.3. a) Fi9,3, b) 

Fig.3, c) Fig.3, d) 

F = 4u^{.:- arc cos(a/2u) - arc cos(b/2u) + (a/2u)(l -a^/4u^)^^^ 

+ (b/2u){l - b^/4u^)^^^} if b<2u<(a^+b2)^^^ 

F = 2ü^{(3/2)i; - arc cos(a/2u) - arc cos(b/2u) + (a/2u)(l - a^/4u^) 

+ (b/2u)(l - b^/4u^)^^^ + ab/2u^) if (a^+b^)^^^ < 2u . 

c) If T is an equilateral triangle of side a , we have 

(Fig.4, a, b, c) 

Supplied bv The British Library - "The world's knowledge" 
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F = 3 BU if u < a/2 

F = 6u^arc sàn(a /2u) + 3au( l - a ^ / 4 u ^ ) ^ ' ^ i f a/2 < u < a / / 3 ; 

F =r.u^ + 3u^arc s i n ( a / 2 u ) + ( /3 /4 )a^ + ( 3 / 2 ) a u ( l - a^/4u^)^^^ 

i f a / / 3 < u . 

F i g . 4 , b) F i g . 4 , c) 

2.3 The distribution of the distance from â  given point to.the 

nearest graph. Let F*(u) be the àrea of the set of points whose 

distance to T is ^u . This function F*(u} is also a characte-

ristic of T . Proceding as before we have that 

Thz piobab¿t¿iy that thz dtitance. iiom a potnt Q, choiíti at Aan-
dom ¿ndzp&ndíntly oi the. p/ioce¿¿ oi gKaphi, to the. maKí&t gKaph 
cxceedA u ¿i cxp l -xF*) . 

The function F*(u) must be calculated for each particular graph. 

For instance, by direct computation, it is easy to obtain the follo-

wing results: 
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a) If T i s a Tine segment of length a , we have 

F*(u) = T,\i^ + 2ua ; 

b) If T i s a rectangle of sides a, b such that b > a . 

we have (Fig.5, a, b ) : 

? 2 
F*(u) = 4(a + b)u + iiu - 4ü , if 2u « a ; 

F*(u) = 2(a + b)u + irû  + ab , if a < 2u . 

WF^ 
'^ mm4^ 

Fig.5, a) Fig.5, b) 

c) If T i s an equi lateral tr iangle of side a , we have 
( F i g . 6 , a , b) 

F*(u) = ru^ - 3/3 û  + 6au , i f u < a/2/3 ; 

F*(u) = 3au + vjû  + { /3/4) a^ . i f a /2 /3 < u 

Fig.6 , a) . F i g . 6 . b) 

SuDDiied bv The British Librarv - "The world's knowledqe" 
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3. SECOND EXTEHSION: SETS OF GEODÈSIC SEGMEMTS OfI SURFACES. 

3.1 Sets of geodèsic segments wh i eh Intersect â  convex set. 

The density for geodèsic segments S oh a surface i (riemannian 

space of dimensión 2} is glven by the same formula (1.2), where 

now dG stands for the density of geodèsic lines of the surface 

(see \^'\ ) . A bounded set of points K on the surface is called 

convex if every geodèsic has at most tvio points in comnon with the 

boundary aK, exceptimg geodèsics which havc an entire segment 

which belongs to aK . Let D be the diameter of K . If the sur­

face z has closed geodèsics and their minimal length is L, we 
will consider only segments whose maximal length s satisfles 

the inequality 

(3.1) m ^ u 

That means that f(s) = 0 for s > s 
m • 14 

With these conditions, the measure of the set of oriented geode* 

sic segments which intersect a fixed convex set K of àrea F and 

perimeter L , is M j 

(3.2) I dS = 2T;F + 2E(s)L i 
and denoting by v the number of extreme points (origin or end points) 

of the seghients S intersectlng K which are within K , we have 

(3.3) 
\^ 

dS = 4nF 

Let S be a segment wiiich intersect K and let a denote the 

length of the part of S within K . Consider the integral 

(3.4) d G A d S 

extended over all palrs (G,S) such that G/^S £ K . If we first 

leave S fixed, we have Jj = 4 la dS and if we first leave 6 

fixed and o denotes the length of the chord G O K , we have J, ' 

4E(s) lo dS = 8íE(s)F (according to well known results of Integral 

Geometry, see for instance [BJ ). Henee, we have 

(3.5) dS = 2^E(s)F 



289 

Consider now two geodèsic segments S., S^ which intersect K 

* Let Pjg denote the function which is equal to 1 if SjASpéK 

and is equal to zero otherwise. Consider the integral 

(3.6) \ nj2 «JSjAdS. 

extended over all pairs such thai S.HSg f 9 (i = l,2) . If a, 

denotes the length of the intersection S.D K , integrating first 

with respect to S- we have Jg = AEÍs») fo.dS, , and according 

to (3.5) we have 

(3.7) Jg = 8nF E(Sj)E{S2) . . 

Frora (3,2), (3,3), (3.5) and (3.7) we deduce: 

a) The mean valué E(v) of the number of extreme points (ori-

gin or end point) within K of n geodèsic segments on a surface 

2: which intersect at random a convex set K of 2: , is 

(3.8) E(v) 
2TinF 

nF + E(s)L 

b) For n geodèsic segments S. (i=l,2 n) chosen at random 

on the surface z , which intersect a convex set K . the mean valué 

of the sum of the lengths a. within K , Is 

_ E ( s . ) 

1 
(3.9) 

E(s^)L 

If all segments have the same mean length E(s) , we have 

miFE(s) 

c) For n geodèsic segments Ŝ  chosen independently at random 

on the surface z . w h i c h intersect a convex set K , the mean valué 

of the number N of segment-segment crossings within K , is 

Sunnlied bv The British Librarv - "The world's knowledae" 
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(3.11) E(N) = 2iiF 
N E(5^)E(Sj) • 

4 ^ («f * E ( S ^ ) L ) ( I T F + E(Sj)L) 

I f a l l segments have the sane mean length E(s) , we have 

(3.12) E(N) 
n ( n - l ) . F ( E ( s ) ) ' 

Uf + E(s)L)' 

3.2- Sets of segments on the unít sphere. The measure of all 

geodèsic segments o.n the unit sphere has a finite value, namely 

(3.13) J - í dS 

Total 

f(s) dsAdPAd* = 8i 

Henee, from the results above we can state: 

a) The mean value of the number of extreme points (orlgin or 

end points) of n random segments chosen independently at random 

on the unit sphere, which lie within a convex set K , is 

nP 
(3.14) E(v) 

2a 

b) Let K be a convex set of diameter D on the unit sphere. 

Consider a random segment whose maximal length satisfies the ine-

quality D+s X 2i. . Then, the probability that S A K j* Í5 , is 

(3.15) p ( s n K jf 0) 
;iF + E{s)L 

4:i' 

c) The mean value of the total length within. K of n random 

segments S. chosen independently on the unit sphere, is 

n 

(3.16) E(£ô ) = (4 = )'^F2^E(S,) 
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If all segments have the same mean length E(s) , we have 

nE(s)F 
(3.17) E(la^) " 

4H 

d) The mean number of segment-segment crossings within • K of 

n segments placed Independently at random on the spherc is 

(3.18) E(H) = (8.3)-^ F /__^ E(s.)E(s.) . 

In particular, if all segments have the same mean length E(s), 

we have 

(3.19) E(N) = 
n(n-l)(E(s))'^F 

16ii" 

3.3 Sets of segments on the hyperbolic plane. From (3.2), (3.5) 

and (3.6) we dleduce: 

a) If K is a convex set interior to a convex set XQ on a 

given surface l , the probability that a random segment intersec-

ting. KQ . also intersects K , is 

nF + E(s)L 
(3.20) 

'fo * ^<'H 

b) If we consider n random segments of the same mean length 

E{s) which intersect K- , the mean valué of the total length of 

their intersection with K , is 

(3.21) E(ta^) 
n«E(s)F 

;iFn + E(s)L, 

and the mean valué of the number N of segment-segment crossings 

wi th in K , is 

SuDDiied bv The British Librarv - "The world's knowledae" 
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(3.22) E(H) = 
n (n- l ) : , (E (s ) )^F 

(TTFQ + E ( S ) L Q ) 2 

c) From (3.20) i t follows that i f there are chosen at random 

n segnents which intersect KQ 

of thetn intersect K , Is 

(3.23) 
/ n W :,? 4 E(s)L Y 

''^"(mj\rFo* E(S)LJ 

the probability that exactly m 

rF + E(s)L n-m 

^ V E(s)Lo 

Assume that Z is an unbounded surface of infinite àrea and 

let Kg expand to the whole surface at the same time that ' n-*-» 

in such a way that 

n 
(3.24) •• X (posi t ive constant) . 

Assuming moreover that under these conditions we have 

(3.25) 

then p„ tends to the limit 
fil 

(3.26) 
(AH)"" nF + E(s)L 

p_ = • e x p ( - x H ) , H =• 
m! T. + ICE(S) 

It is known that K^O for the euclidean plañe and K^I for 

the hyperbolic plane r6J . The obtained process is called an ho-

mogeneous Poisson segment process of intensity x on :; 

According to (3.26) the nean number of segments intersected 

by a convex set K placed at random on the surface is AH . 

Using (3.21) and (3.22). we get that the mean valué of the to­

tal length within K of segments that intersect with. K is 

AT:E(S)F 

(3.27) E(Ea,-) 
' 7. * .cE(s) 
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and the number of segtnent-scgment crossings within K , is 

(3 .28) E{N) = 
X^n(EÍs))^F 

(» + «E(s))2 

For the euclidean plane, ic=0 , these results are the work of 

Parker and Cowan fs] . For the hyperbolic plane we must put »: = 1 . 

d) Comsider the hyperbollc plane. ic = l . If D denotes the 

dlstance from a point Q chosen at random independently of the 

process, to the nearest r-th line segment, the probability that 

D > u Is cqual to the probability that a disc of radius u placed 

at random on the plane intersect no more than r-1 line segments, 

that is 

(3.29) 
•"-^ (XH)"* 

p(D^>u) = > exp(-xH) 

m=ü 

where H is given by (3.26) with 

(3 .30) >c = I , F = 2Ti(cosh u - 1 ) , L = 2 i r s i n h u . 

For r = l we have the 'p robab i l i t y that the distance from a point 

Q chosen at random on the hyperbollc plane to the nearest l ine 

segment is greater than u . Thus, the probabi l i ty density function 

for the distances from Q to the nearest l ine segment is 

(3.31) 

with 

(3 .32) 

2XTi(Tr + E(s))"Mi!SÍnh u + E(s)cosh u) exp{-xH) 

2 . / 
H = (n 

T + E(s) \ 
(cosh u - 1) + E(s) si nh u I 

Runnlied bv The British Librarv - "The world's knowledae" 
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