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ANNALS OF MATHEMATICS
Vol. 51, No. 3, May, 1950

INTEGRAL GEOMETRY IN PROJECTIVE AND AFFINE SPACES
By L. A. SANTALG
(Received December 27, 1948) .

Introduction

The fundamental concepts of integral geometry in a general space in which a
transitive Lie group of automorphisms has been defined were given by Chern
[3]. Our purpose is to apply these fundamental concepts in order to study the
integral geometry in projective and affine spaces and to deduce from this study
some geometrical consequences.

In §1 we give a brief summary of the ideas of Chern, who was the first to
apply the Cartan’s theory of Lie groups to the integral geometry; only the
condition (1.11) is slightly different from that given by Chern. In §2 we study
the integral geometry in projective space. In §3 we consider the unimodular
center affine group and its integral geometry and in §4 we apply the obtained
results in order to give an elementary proof of a theorem of Minkowski-Hlawka
belonging to the geometry of numbers. Finally, in §5, we indicate the main
results of integral geometry in unimodular affine space.

1. On the measure of sets of geometrical elements with respect to a given
group of Lie

Let E be a space of points z in which an r-parameter Lie group G, of auto-
morphisms has been defined. Let a', d’, - - - , a’ be the parameters of G, and

(1'1) wl(ay da), “’2(0'7 da)7 Tty wr(ar da)

its relative components (see Cartan [1] p. 79), that is, a set of r linearly inde-
pendent Pfaffian forms invariant under the first group of parameters of G, .
These relative components satisfy the equations of structure of Maurer-Cartan

(1.2) w:{ = Z c;k[“’i‘*’k]; 1= 1) 21 e, T
ikl

where cj; are the constants of structure of G, , and w; denotes the exterior deriva-

tive of the form w; . The square brackets denote exterior multiplication.

Let H be a geometrical element of E depending upon % parameters. By a
geometrical element we understand a set of points of E which may be determined
by a finite number of parameters. For instance, if E is the 3-dimensional euclidean
space, points, straight lines, quadrics, are geometrical elements. In general, any
figure transformed of a given fixed figure F by s € G, is a geometrical element,
because it may be determined by the parameters of s.

Let us assume that the subgroup of @, , which leaves invariant the geometrical
element H, is a continuous subgroup g, depending upon r — h parameters. In
the space of parameters, g, will be represented by an (r — h)-dimensional
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740 L. A. SANTALO

variety which we shall represent by the same notation g, . The variety g, and
its transformed sg,s , by the operations s of the group of parameters of G, , fill
up the whole space of parameters and have the property that no two of them
can have common point without being identical. Thus the varieties sg,_s are the
integral varieties of a completely integrable Pfaffian system. Furthermore the
totality of varieties sg,— is invariant with respect to the first group of para-
meters; consequently the left hand sides of the Pfaffian system are linear combina-
tions with constant coefficients of the relative components w; , - - - , w, . Since the
relative components are determined up to a linear transformation with constant
coefficients, we may suppose the Pfaffian system which integral varieties are
8g,—n to be

(1.3) w = 0, w =0, ,w =0.
Let
1.4) a@, - ,d)=d, -, @@, -+ ,d) =
be h mdependent first integrals of (1.3). That means that to each set of constants
&, -+, o corresponds an integral variety sg,_, . Thus we can take o', --- , o

as coordinates of the variety sg,—n . In the original space E, to each sg,— cor-
responds a geometrical element sH, transformed of H by s. Conversely, to each
sH of E corresponds a variety sg,_s, consequently o', ---, o' may also be
considered as coordinates of the geometrical element sH.

By “density” of the elements sH we shall mean an exterior differential form of
order h of the form

(1.5) dH = f(d, -+ - , o) [da' do” - - - da’]

such that its value be invariant under the group G, , i.e., under the first group of
parameters. Since @, is transitive with respect to the elements sH, this density,
if it exists, is unique up to a constant factor. The measure of a set of elements
sH will then be the integral of dH extended over the set. )

Being independent first integrals of (1.3), the differentials da’ are linearly

independent combinations of w; , - - - , ws and we get, by exterior multiplication,
an expression of the form

(1.6) [do* --- do’] = A@, -+, a)ws -+ wa), As=0

or

(1.7) [wr -+ wi] = A/A)de - - - da).

The left hand side is invariant under the first group of parameters; therefore,
in order that (1.5) be a density, we must have, up to a constant factor, f = 1/A(a),
that is, A(a) must be a function of o, ---, o* only (condition of Chern [3]).
The density is then defined up to a constant factor by

(1.8) dH = [wws - -+ wh).
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The foregoing condition of Chern is, in general, not easy to apply. In many
cases it is more convenient to express it in the following equivalent form.

The exterior differential form [w; --- ws] is always invariant under the first
group of parameters. However, it is not always a density because it depends on
the r parameters o' and, though each point a determines an element sH, to each
sH corresponds all points a of the corresponding variety sg,—» . In order that
(1.8) be a density its value does not change when the points are displaced on the
varieties g, . That is, if we consider an h-dimensional variety V3 in the space of
parameters, in order that (1.8) be a density, it is necessary and sufficient that the
integral

(1.9) [wr -« wn]
Va

be invariant when each point of V) displaces on the variety sg,—» which passes
through it. That is equivalent to saying that the integral (1.9) is zero when
extended over any closed h-dimensional variety (observe that a general V,
intersects the varieties sg,» in points only). The generalized Stokes formula
(see, for instance [2] p. 40) says that if V4,118 any (b + 1)-dimensional domain
and V34, is its boundary, it is

(1.10) -/;V».,.x [wp <« wp) = '/;h+l [wp -+« wal.

Since V41 is closed and of dimension k4, the last integral must be zero for any
integration domain V41 ; consequently the integrand must be zero, and we get:
A necessary and sufficient condition for (1.8) to be a density for the elements sH is

(1.11) for - @) =0.

As a first and immediate application of this result, let us consider the case in
which H is a geometrical element such that the subgroup of @, , which leaves it
invariant, reduces to the identity. In this case H depends on r parameters and
to each element sH corresponds an unique transformation s of the group of
parameters; the varieties sg,—» are the points of the space of parameters and
the density (1.8) is formed by the exterior product of all relative components w; .
Having taken into account the equations of structure (1.2) the condition (1.11)
is obviously satisfied in this case. We shall write

(1.12) dG, = [w - - - )

and following Poincaré and Blaschke the density d@, will be called the “cinematic
density” of the group G, . Thus we have: the cinematic density of a group always
extsts.

Let us now consider the case in which the subgroup g,—», which leaves H
invariant, is a discrete group. In this case g, will be represented in the space of
parameters by a set of (r — h)-dimensional varieties, without common point,
and congruent with respect to g~—» . Analogously as in the continuous case, each
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of these varieties will be represented by a Pfaffian system of the form (1.3). The

density for sets of elements sH will then be dH = [w; - ws], assuming that

(1.11) is satisfied. The only thing we have into account is that in the present

case to each partial variety which composes sg,_s corresponds the same geometri-

cal element sH, so that, in order to measure a set of different elements sH, the

domain of integration must be considered in the space of the factor group G./g,-s .
In §4 we shall see an example in which g, is discrete.

2. Integral Geometry in Projective Space

Let P, be the real n-dlmensmnal projective space. Following E. Cartan, [1]
p. 75, a set of n + 1 real numbers z°, - - - , 2" (not all equal to zero) will be called
an ‘“analytic point”, represented by x, whose coordinates are the numbers z'.
To each analytic point z corresponds the ‘“‘geometric point” whose homogenous
coordinates are z°.

The projective group G, (r = n(n + 2)), which we shall denote by B, may be
represented by

(21) (xk)’ = Z al;xi (’C = 0, 17 ] n)
1=0

with the condition

(2.2) | di| = 1.

That means that each projective transformation is determined by n + 1
analytic points ai(ai, ---, af), ¢ = 0, 1, ---, n which satisfy the condition
(2.2). Instead of (2.2) it will be more convenient to write
(2.3) | Goar -+, 0. | =1

where the left hand side represents the determinant formed with the coordinates
of the analytic points a; .

The r = n(n + 2) relative components of the projective group are defined
by the equations (Cartan [1] p. 84)

(2'4) da; = kzo Wi Ok 1 = 0, 1’ <o, M.
From (2.3) and (2.4) we deduce

(2.5) wik = | G @1 +*+ Gk—1dAiGis1 *** G |
with the condition, obtained by differentiation of (2.3),

(26) i Wiy = 0.

1=0

The equations of structure are obtained by taking the exterior derivative of
(2.4) and taking into account the relations (2.4) themselves. The result is

2.7 (wij)' = ; [wi wr5]-
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We have now all the necessary elements to study the integral geometry in P, .
Let us consider the geometrical elements sH defined by a completely integrable
Pfaffian system

(28) Wiyj, = 0, Wigjy = 0,--, Wipjp = 0.

This is the system (1.3) of §1, which means that the integral varieties sg._
of (2.8) correspond to the geometrical elements sH obtained applying a projective
transformation to one, say H, of them.

A necessary and sufficient condition in order that the elements sH possess an
invariant density is given by (1.11); that is

(2.9) [wi =+ @il = 0.

We want to see the form which takes this condition in the particular case of
the projective group. We have, according to (2.7),

h n
—1
(Wi - wipa) = El (=)™ wirss *** Digy_1imes 12% (@i 1025 )i 13myr ** * @inial-
me= =

Since the system (2.8) is completely integrable, the theorem of Frobenius, [1]
p. 193, says that at least one of the forms w;,:, wi;, for any m and I belongs to
the set (2.8). Therefore it is

h
(2.10)  [wiys, -0 wigl = (1) [wig, - wz'mmgl (Wimim = Wimin)]-

Thus, if we set dH = [wi,j, + * + wiy 5], We have the following

LeEMMA 2.1. In order that the geometrical elements defined by the system (2.8)
possess an tnvariant density with respect to the projective group, it is necessary and
sufficient that

(2.11) I:dH~mZh_:1 (@smim — w,,n,»m)] = 0.

Let us apply this lemma in order to see if the linear subspaces S, of dimension
h (h < m) possess a density. The geometrical element H is now a particular S,
and the set of geometrical elements sH is the set of all h-dimensional subspaces
in P, , since each of them may be obtained from S, by a suitable projectivity.
Consider the S, defined by the analytic points ao, - - -, axn, that is, the linear
subspace defined by the parametric equations

h
(2.12) ' = ) Mai, i=0,1,---,n.
k=0

The subgroup ¢ of projectivities which leave this S, invariant is characterized
by the condition that the points ao, -, ax remain in S, . Consequently the

differentials da; (0 < ¢ < h) must be linear combinations of ao, ---, as and
(24) gives

1 =01 ---,h
(2.13) wix =0 for

E=h+1,---,n.
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This is the Pfaffian system which corresponds to the linear subspaces S ;
it is composed of (h + 1)(n — h) equations. According to the lemma, a density
for Si will exist if and only if

(2.14) [ I wa ( i wy — Zh: wn):l =0.

{0, -, l=h+1 1=0
—had-1,ee 0,

From (2.6) we deduce

n

h
Z wy = —lz‘:)wu.

l=h+1
Consequently the left hand side of (2.14) takes the form

(2.15) -2 I: H Wik ﬁ: con:l .
k

i=0,- .,k =0
—htl,e 00, n

Since between the relative components wg there exists only the relation (2.14),
the exterior product (2.15) cannot be zero. Consequently we have:

TeEOREM 2.1. The linear subspaces have no invariant density with respect to
the projective group.

In other words: it is not possible to define a measure, given by an integral of a
form like (1.5), for sets of linear subspaces which will be invariant under the
projective group.

Let us now consider as geometrical elements sets of linear subspaces
Sk, + Sk, + -+ + Si,. , without common point and satisfying the condition

(2.16) h+h+: - +hn+m=n+1
We may take
Sk, defined by the analytic points @y, a;, - -, as,
Sh, “ “ Qhy+1, *° 5y Qhy+hg+1
(2.17) S, “ “ Ghythot2 s *** 5 Qhythot+hy+2
Sh,, “ “ Qhyteoothmordm—ly * " 5 Ghytoothmtm—1 -

The subgroup of projectivities which leave Sy, + Si, + - -+ + Sh, invariant is
characterized by the condition that the differentials da;, are linear combinations
ofa;, forhy+ - +h+s=t=h+: - +hy+sand0=s=m— 1.
Consequently, according to (2.4) we must have w;; = 0 for all pairs ¢, j between
the limits

0§’i§h1, h1+1§j§n;
h4+1=it=h+h+1, 0<j=h, b+ h+2=j7=n;
(2.18)  ceeeeeeieaeeen aen
Mt ot hmatm—1SiSh+ 4 hntm— 1,
0Sj<h+ - +thoatm—2 b+ - +hntm=jsn
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In order to apply the lemma, we observe that, having taken into account
(2.5), for each row of (2.17) the sum of w;; is equal, up to the sign, to the cor-
responding sum of w;; . Consequently condition (2.11) is written

bt o hmtm—1
(2.19) [H wij - > w,,] =0

l=0

where II is extended over all w;; with the conditions (2.18). Since ¢  j in this
product, we find that (2.19) holds only if

hitee - thmtm—1
(220) Z wn = 0

1=0

Since (2.6) is the only relation between the relative components w;;, (2.20)
holds only if

(2.21) h1+h2+~~+h,,.+m=n+1.

Then we have:

TarEOREM 2.2. In order that the elements (Su, + Sa, + -+ + Shn) composed
by m linear subspaces of dimensions h;, without common point and satisfying the
relation (2.16), have an invariant density with respect to the projective group, it is
necessary and suffictent that the relation (2.21) holds. In this case, assumed each
Shi defined by the points indicated in (2.17), the density is given by the exterior
product of the forms w;; (given by (2.5)) where 1, j are submitted to the conditions
(2.18).

For instance, on the straight line, n = 1, the pairs of points have a density
with respect to the projective group, which is given by (¢ — 7)"*[dtdy], where
£, 7 are the non-homogenous coordinates of the points.

For the case m = 2, the foregoing result, following a completely different way,
was obtained by Varga [7].

Finally let us observe that the cinematic density for the projective group P
is expressed by the exterior product of all independent w;;, given by (2.5),
that is

(2.22) dP = [ [ ;wu]

where the accent denotes that the factor wa, is excluded, because according to
(2.6) it is not independent from the others.
Taking into account (2.5) and setting

(2.23) dA; = [dalda} - - - dal] i=0,1,---,n

we may also write, after applying a known property about adjoint determiné,nts,
[5] p- 78.

n—1 n . 3 .
(224) dP = [H dA; - X (=1Yal ddd --- da’t dait - da::].
=0 =0
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That is: the measure of a set of projectivities defined by the analytic points
a; (7=0,1, ---, n) with the condition (2.3), is given, up to a constant factor, by
the integral of the exterior differential form (2.24) extended over the set.

3. The Group of Unimodular Center-Affine Transformations

Let us now consider the n-dimensional affine space and in it the group
A of affine transformations of modulo 1, which leaves invariant the origin
0(0,0, - - - , 0) (unimodular center-affine group). If z*, 2%, - - - , ™ are the non-
homogeneous coordinates of the point z and a; , af , - - - , a? those of the points
a; (7= 1,2, ---, n)which determine the center-affine transformation, the equa-
tions of the group may be written

(3.1) =) = X aiz", i=12--,n
k=1
with the condition

(3.2) | @z -+ aa | = 1.

In the present section there is no more distinction between analytic and
geometric points; since the coordinates are non-homogeneous, all points are
geometric ones.

Analogously to the case of the projective group, the relative components are
now defined by the equations

(33) da; = 2 wijaj, i=12-,n
7=1
which, having into account (3.2) give

(3.4) wi; = | s -+ 6j1daidajpy - an |

with the relation

(3.5) > wi = 0.
i1
The equations of structure are
(3.6) (wi)" = g [wir wr -

For the linear subspaces which pass through the origin o, the group ¥ in the
n-dimensional space, coincides with the projective group in the (» — 1)-dimen-
sional space, assuming each S; in the affine space as equivalent to a Si—; in the
projective space. Consequently, Theorems 2.1 and 2.2 may now be announced:

TrreoreM 3.1. The linear subspaces which pass through the origin have no in-
variant density (or measure) with respect to the unimodular center-affine group A.
The elements (Sn, + Sh, + - -+ + Si,.) composed of m linear subspaces of dimension
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h; , passing through the origin and having no other common point, have an invariant
density with respect to A if and only if the condition

3.7 hh+h+ - +hn=mn
holds.

In the last case, if each S;; is determined by the points aa, + ...+ #; ;41 ,
Ohydeeethi 1425 “* " 5 " * y Qhythgt-.+h; , the density for sets of elements

(Sh, + Sk, + -+ + Si,) is given by the exterior product of the differential
forms w;; , given by (3.4), corresponding to the values 7, j between the limits

bt tha+1SiSh+ o+ ki,

I N it +hi+l1sjsn
fore=1,2,:--,m.

ExaMpLE. On the plane, n = 2, it is not possible to define an invariant measure
with respect to U for sets of straight lines through the origin. However this
measure exists for sets of pairs of straight lines, because (3.7) holds for h; = hy, =1.
If the pair of straight lines is determined by the angles ¢ , ¢ which they form
with the z-axis, it is easily found that the density takes the value d(S; + S,) =
sin"(gz — ¢1)[derden].

Let us now see if density exists for linear subspaces Si which do not pass
through the origin. We may consider as fixed subspace S;, that which contains
the point @, and is parallel to oa; ( = 2,3, ---, h + 1). If this S; is assumed
fixed, the differentials da; (+ = 1, 2, -+, b + 1) must be linear combinations
of @z, -+ - ant1 . Consequently, (3.3) gives

wip =0 for 1=12 - ,h+1
wij=0 for <¢=1,---,h+LlLj=b+2 .-+, n.
According to §1, in order that the sets of S, have a density we must have

(3.10) ['__III wa- ]I ]’=0’

(3.9

e bl im=1, - k41 Wij
jumht2,e 1m0

or, according to the Lemma 2.1, which is also applicable in this case because the
equations of structure (2.7) and (3.6) have the same form in both cases, we have

h+1
(3.11) [ I wa- I wi-2 wu] = 0.
i=1- ekt =l b =1
J=ht2,c0,n
This condition is only satisfied if
(3.12) Wy + wiz + 0+ wrprpr =0 (mod wu)

and since (3.5) is the only one relation between the relative components, (3.12)
holdsonly if h = Qorh 4+ 1 = n.
For b = 0 the density has the value dSy = [wn - wis]. If the points are



748 L. A. SANTALO

assumed to be determined by their coordinates ai, ai, ---, af taking into
account (3.4) and (3.2) we get dS, = [daidai --- dal] that is, the density for
points equals the element of volume, which is an obvious result, since the center-
affine transformations are assumed volume preserving.

For h = n — 1, if each hyperplane is determined by one, say a, , of its points
and the directions oa; (7 = 2, - - - , n) the density has the value

(3.13) dSna = [onwy * -+ wm].

In order to give a geometrical interpretation of this density we proceed as
follows.

Let b be the point on the unit hypersphere of center o such that the radius ob is
perpendicular to the hyperplane determined by the points 0, a; (¢ = 2,3, - - - , n);
that is, the point b determines the direction normal to S,—; . If b*, b%, ---, b"
are the coordinates of b, the element of area on the unit hypersphere correspond-
ing to the point b is expressed by

[db' - -« b dbt ... db"]

(3.14) dB =

(=1
where the right side is independent of 7. Let by, b3, - - - , b, be n-unit orthogonal
vectors with the origin o on the hyperplane determined by o, az, :--, an.
If we set
(3.15) (bsdb) = —(bdbs) = D b db*, i=2-,n
k=1
will be
(3.16) [II (® db.-)] = > Bddb* --- db* @b ... db™
=2 =]
where S; is the complementary minor of b* i the determinant | bb; - - - ba | = 1.
Therefore, taking into account (3.14) and (3.15) we get (in absolute value)
(3.17) dB = [II ® dbi)].
=2

On the other hand, since the vectors b; and oa; are on the same hyperplane
we may write

(3.18) ai = 2 Nibx, i=23,-,n

k=2

and consequently
(3.19) [;[:Iz () da.-)] = |N\%| Dilz ® dbk)] = || dB.

Since (ba;) = Ofori = 2,3, -+ - , n, from (3.3) we deduce (bda;) = wa(ba;) =
wapy cos 0, where p; is the length oa; and 6 the angle which forms oa, with ob;
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that is, if p means the distance from o to the hyperplane S.—;, we have p = p, cos 8
and consequently from (3.19) we deduce

(3.20) [H wn] " = |\i| dB.
fm=2

Moreover, from (3.3) we deduce (bda;) = wn(ah) = wup and since (ad) = p,
we have (bda,) = dp — (a:db); if, furthermore, we take into account [(a:db)dB] =
0, we get

(3.21) [wndB] p = [dpdB].

On the other hand, since the parallelepiped spanned by 0a(t = 1,2, -+ n)
has volume 1, it is | A} | p = 1, and therefore (3.13), (3.20) and (3.21) give

(3.22) dSu1 = p "*"[dpdB].

This is the wanted geometrical interpretation for dS,_: . We may summarize
the foregoing results in the following

THEOREM 3.2. The points and the hyperplanes are the only linear subspaces which
have an invariant density with respect to the unimodular center-affine group A.
The density for points equals the element of volume. The density for hyperplanes is
given by (3.22) where p denotes the distance from the origin to the hyperplane and
dB denoles the element of area on the unit n-dimensional sphere corresponding to
the point which gives the direction normal to the hyperplane.

For instance, if p = p(B) is the support function with respect to the origin o,
of a convex body in the n-dimensional space, which contains o, the measure of
all hyperplanes exterior to the convex body, invariant with respect to %, is
given by

(3.23) M(Sus) = (1/n) f p"dB

the integral extended over the whole surface of the n-dimensional sphere.
Finally, we want to give a geometrical interpretation for the cinematic density
of ¥U.
According to §1, the cinematic density of ¥ is given by

520 i - [[re.]

tkm=1

where the accent denotes that w,, is excluded.
From (3.4) and (3.2) we deduce

(3.25) I:kH1 w.-,,] = [da} da} - - - da?] = dA;

where dA; denotes the element of volume corresponding to the point a; . Accord-
ing to (3.4) we have

(3.26) wm = oxdan + aidal + -+ + afdal
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where o denotes the algebraic complement of aj in the determinant |aas - - an|
= 1. Consequently

n—1 n

(3:27) i wn,c] = 3 aifdal --- dal™ da’? - dal]
k=1 =1

where &}, denotes the algebraic complement of o, in the adjoint determinant

| @i |. By a known theorem (see, for instance, Kowalewski [5] p. 80) it is &), =

(—1)"*"a},. Consequently we have

n—1 n

(3.28) [H w,.,,] =2 (=1)"" di[dal --- da’ dai - - - dal).
k=1 =1

The right hand side of this expression is equal to n times the volume of the

elementary cone, which projects from o the element of volume corresponding

to the point a, . If we represent it by dV,, from (3.24), (3.25) and (3.28) we get

(3.29) d¥ = n[dA1dA; - - - dA.1dV,)

which is the geometrical interpretation for d% we want to obtain.

This cinematic density can also be expressed in another form, which will be
useful in the next section. It is based in the following

LEmma 3.1. Let a,, @z, -+ Gny be n — 1 points in the n-dimensional space;
let dA; be the element of volume corresponding to a; and dA; the element of (n — 1)-
dimensional volume corresponding to a; in the hyperplane S._, determined by the
points 0, @y, - -+ , Gn_y . If dB denotes the element of area of the n-dimensional unit
sphere corresponding to the point b such that the radius ob is normal to S,—; , and
V(ap -+ an_y) represents the volume of the (n — 1)-dimensional parallelepiped
spanned by the vectors oa; (i = 1,2, --- ,n — 1), then (in absolute value)

(3.30) [dA1dAs - - dAns] = V(ay - -+ ana)[dA,dA; - -+ dA,_,dB].

Proor. Let 0b; (t = 1,2, -+ ,n — 1) be n — 1 orthogonal unit vectors con-
tained in Sp—1, and wix (k = 1,2, --- ,n — 1) be » — 1 orthogonal unit vectors
orthogonal to a; (¢ = 1,2, -+ , n — 1) with ow;,»1 = 0b. If p, is the length of
oa; , formula (3.17) applied to oa; gives

(3.31) dA; = [ﬁ (wi: day) dp.-] ot
and, by the same formula,
(3.32) di; = [ﬁ (wi1 das) dp.-] Pt
If it is,
n—1

(333) ai=2x§bk; i=1;2;""n_l
k=1
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will be

(3.34) da; = Z‘; dNi by + k_ﬁ‘; N; dbi

and

(3.35) (b da:) = (Wi das) = g Ni(b dby).

Consequently, by exterior multiplication we get

(3:36) [T winraad ] = 1t [T eaw] =118
From (3.31), (3.32) and (3.36) we deduce

(3.37) [d4y - dAna] = | Ni| p1 -+ pualddy -+ - dA,ydB)

and since | Xs | p1 - -+ pas = V(ay - - @ny), formula (3.30) is proved.

Let us now observe that if dV,,_, , analogously as in (3.29), means the volume
of_the elementary cone which projects from o the element of volume dA4,_; and
dV,,_, has the analogue meaning in the subspace S,_;, under the assumption
n > 2,it is

dAn—l = (n/Pn—l)[dVa,._ldpn—lL df-{n—-l = (n - l/Pn—l)[dVa,._ldpn—l]
and therefore, (3.30) may be written
(3.38) n[dA; -+ dA,2dV,, ] = (n — )V(ay -+ @ny)ld4; -+ - dAd,_,dV,,_,dB].

By symmetry, the cinematic density (3.29) may also be written d¥ =
n[d4, -+ - dA,—2dV,,_,dA.,] and therefore, from (3.38) we deduce

(3.39) dA = (n — DV(ay -+ any)[dA; - -+ dA,_,dV,,_,dBdA,)].

In order to introduce the cinematic density d¥,_, of the unimodular center-
affine group in the subspace S,_;, it is enough to observe that by a change of
variables af = pa§’, p = (V(ay -+ ana))™, it is

(n — 1)[d4; -+ dA,2dV,,_,]
(3.40) ' ' » e
= (V(al oo a,.__l))" (n - 1)[dA1 oo dAn—2dVa;_1]~

In order to set in evidence the dimension of the space set now d¥, instead of
d¥ and from (3.39) and (3.40) follows

(3.41) al, = (V(ay - -+ @n1))" [dAndBdN,.—4].

If A is the distance from a, to S,_; it is V(a, - - - a,_1)h = 1, and d¥, takes
the form

(3.42) dd, = b "[dA,dBdA,].
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(3.41) and (3.42) are two recurrent geometrical interpretations of d¥l, (for
n > 2) which will be useful in the next section.
For the excluded case n = 2, (3.29) becomes in our actual notation

(3.43) d; = 2pi[dA.dB).

4. A Theorem of Minkowski-Hlawka

In order to make an application of the results of the foregoing section we want
to give a proof of the following theorem ammounced by Minkowski and first
proved by Hlawka [4]:

If Q is an n-dimensional star domain of volume < ¢(n), then there exists a lattice
of determinant 1 such that Q does not contain any lattice point %~ 0.

This theorem was also proved by C. L. Siegel [6] and A. Weil [8]. The following
proof is based on the same idea as that of these authors. It is, however, more
simple and exposed from a more elementary point of view.

Let us consider in the n-dimensional space S, the lattice Ly of points of entire
coordinates, and the set of all lattices L transformed from L, by the group %, ,
that is, the set of all lattices of modulo 1. In this case the subgroup T' of ¥, , which
leaves invariant Lo , is discrete. In the space of parameters, I' will be represented
by a set of infinite isolated points. Consequently the invariant density for sets of
lattices L will be the same (3.29) or (3.41) which now we will write

(4.1) dL = (V(ay -+ @n_1))"[dAdBdA,—1]

under the assumption that L is determined by o and the points a,, --- a, .

In order to have a one-to-one correspondence between lattices L and points of
A, , we must consider not only the whole space %, but the space ,/T'. Con-
sequently, in what follows, whenever dL appears under the integral sign, it
must be understood that the integral is taken over U,/T.

Let D be a given fixed domain of volume » in S, and consider the integral

(4.2) I= dL.
aneD

To evaluate this integral we first keep a,, fixed. For each given 2, , in order to
obtain different lattices L, the points a; ¢ = 1,2, --- , n — 1) can only vary
in the intervals a; + Aa, (0 £ A = 1). Setting shortly V(a, -+ @.—1) = V and
considering the points Vb, we observe that they are contained in the hyperplane
inverse of the hypersphere of diameter oa, in the inversion of center o and
power of inversion 1, because if A is the distance from a, to the hyperplane
determined by o andai, a2, - -+ , an_1 it isalways VA = 1. Here, b has the same
meaning as in the foregoing section.

Furthermore, when the points a; describe the intervals a; + Aa,(0 = X\ < 1),
independently of each other the point Vb describes the (n — 1)-dimensional
parallelepiped spanned by the vectors a; — oy (¢ = 1,2, ---, n — 1) where
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a = {a; -+ a1} and
a; = {a1 -+ @i18i + GaGit1 -+ Apa}
= {a - @) + (=D a1 -+ @Gialip - @}
The notation {@a; - - a,—} means the vector whose components are the

determinants of order n — 1 in the rectangular matrix formed by the coordinates
ofai,a, -+, 8.

The volume of the pyramid of vertex o and basis this parallelepiped has the
value (1/n) | a0 + -+ an1 | = 1/m, according to a well known property about
adjoint determinants ([5] p. 80).

On the other hand, the volume of the last mentioned pyramid is given by

(1/n) f V"dB. Consequently we get that the integral of V"dB in (4.2) has

value 1.

If, only for a moment, we assume that the total measure of the unimodular
center-affine transformations of the space S,_; has a finite value V,_; , from (4.1)
weget] = Vi, dA., . If now a, describes D, we get the value V,_w. In this

aneD
way each lattice L has been counted as many times as lattice points of coordinates
primes among themselves (we shall say primitive lattice points) are contained in
D. In fact, when a, coincides with any one of these points it originates the same
lattice. Consequently if we represent by N the number of primitive lattice
points of L contained in D, we have the integral formula

(4.3) f NdL = oV,

where the integration is extended over the whole space %,/T.

In order to introduce in (4.3) instead of N, the total number N of lattice points
contained in D for each lattice L, we follow a very useful device due to Siegel [6].
Let us consider the domain ¢ 'D (of volume ¢ ™), homothetic of D with respect
to o and ratio ' (i integer). To every lattice point contained in D, whose
coordinates have the greatest common diviser ¢ (the number of which will be
represented by N;), corresponds a primitive lattice point in ¢—*D. Therefore
the same formula (4.3) applied to 7D, gives

(4.4) fN, dL = vVayt ", i=23 -
Adding (4.3) and (4.4) for¢ = 2,3, --- we get

(4.5) f N dL = oVoyt(n).

It remains to evaluate V,_; . For this purpose we may again follow the method
of Siegel [6]. Let us consider the lattice of points of coordinates multiple of
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m™" (m integer); if N, is the number of lattice points of this new lattice contained
in D, (4.5) gives

(4.6) f (Nn/m™ dL = oVa_rt(n).

When m — o, N,/m" tends to the volume v of D and therefore the total
measure V, of the lattices L will be

4.7 Vo = Vaut(n).
Since formula (3.41) holds only for n > 2, (4.7) holds forn = 3,4, - - - . For the
case n = 2, starting from (3.43) the same foregoing calculation gives f NdL = v

instead of (4.3), f NdL = v¢(2) instead of (4.5) and V, = {(2) instead of 4.7).

Consequently (4.7) makes sure that every V, is finite and gives, moreover, the
known result V, = ¢(2)¢@3) --- t(n).

From (4.3), (4.5), and (4.7) we obtain the following mean values. If we consider
all lattices L of modulo 1:

a) The mean value of the number of primitive lattice points contained in a given
domain D of volume v is v/¢(n).

b) The mean value of the number of lattice points contained in D is equal to v.

The announced theorem of Minkowski-Hlawka is an immediate consequence
of a). In fact, if v < {(n), the mean value of primitive lattice points is < 1 and
therefore there exist lattices without primitive lattice points in D. If D is a star
domain, i.e., a point set which is measurable in the Jordan sense and which
contains with any point z the whole segment Az, 0 < X\ < 1, and does not contain
any primitive lattice point, it does not contain any lattice point and the theorem
is proved.

6. The Unimodular Affine Group
The group & of unimodular affine transformations, given by

(5.1) (x‘)’=za§~xi+a3, t1=12 +--,n
j=1
with
(5.2) | as - an | =1
may be studied in exactly the same way as in §2 and §3. Setting
(5.3) da; = Z Wijhj, t=0,1,---,n
=1

it is found

n
(5.4) Wi = |Q1°°Qjy da;a,-+1- cQp ‘, z; wi; = 0
i=
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with the equations of structure
(5.5) wij = ; [wirwaj].

Similarly, as in §2 and §3, we get in this case the following

THEOREM b5.1. Except the points (h = 0), the linear subspaces have no invariant
density with respect to the unimodular affine group. The sets (Sp, + Sp, + + - - +
Sh,), with by + ha + -+« + hm + m = n + 1, of linear subspaces, admits a
density only when either all h; are equal to zero, or the condition

hh+h+ - +hatm—1=n
holds.

For instance, the sets of (hyperplane + point) admits a density, which is
easily found to be equal to p~"*’d A, dBdp, where d4, is the element of volume
corresponding to the point, dB is the element of area on the (n — 1)-dimensional
unit sphere corresponding to the direction normal to the hyperplane, and p is the
distance from the point to the hyperplane.

Finally, if the unimodular affine transformations are assumed determined by
the point ap and n vectors a; — ap (¢ = 1,2, - -+, n), the cinematic density is
given by

(5.6) df = [dA.d¥]

where dA, is the element of volume corresponding to ay and d¥ is the cinematic
density (3.29), (3.41) for the unimodular center-affine group with a, as fixed
point.

TrE INSTITUTE FOR ADVANCED STUDY.
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