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Abstract

We consider a countable number of independent random uniform lines in
the hyperbolic plane (in the sense of the theory of geometrical probability)
which divide the plane into an infinite number of convex polygonal regions.
The main purpose of the paper is to compute the mean number of sides, the
mean perimeter, the mean area and the second order moments of these
quantities of such polygonal regions. For the Euclidean plane the problem
has been considered by several authors, mainly Miles [4)-[9] who has taken it
as the starting point of a series of papers which are the basis of the so-called
stochastic geometry.
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1. Introduction

Consider the Euclidean plane uniformly coveied by random lines which will
divide the plane into an infinite number of convex polygonal regions. This set of
random polygonal regions was first studied by Goudsmit {2] who obtained the
mean number of sides, the mean perimeter, the mean area and the mean area-
squared of the polygons. More general results were obtained later by Miles
({4), [5)y and Richards [10]. Interesting generalizations to Euclidean n-dimen-
sional space have been established by Miles ([6], [7], [8] and [9]).

In [12] one of the present authors studied the same problem for the hyperbolic
plane. He considers first the regions into which a fixed circle of radius r is divided
by n random lines and then takes the limit of the expected values corresponding
to these regions as n and r tend to infinity in such a way that n /r tends to a finite
constant.

This procedure is satisfactory for the Euclidean plane. However, for the hyper-
bolic plane a more detailed study is necessary. Consider, for instance, the plane
divided into an infinite set of convex polygons by a countable number of in-
dependent random uniform lines and a circle of radius r placed on it (Figure 1).
We may consider the mean area E’(A) of the regions into which the circle is
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Figure 1

partitioned and the mean area E.(A) of the polygons having at least one point
in common with the circle, In the case of Figure 1 we have the ‘‘empiric averages’
E*(A) = ar?/13 and E(A) = F /13, where F is the total area of the polygons
having at least one point in common with the circle. In the Euclidean plane
E*(A) and E/(A) tend to the same limit as r — co, while in the hyperbolic plane
both limits have different values (which we will denote by E*(A4) and E(A) res-
pectively). This distinction was missing in [12], where only the mean values E*
were considered. The difference arises from the fact that in the Euclidean plane
the edge effects on the boundary of the circle may be disregarded and in the
hyperbolic plane they may not.

In this paper we take the problem from the beginning and consider, from a
general point of view, the plane of constant curvature k S 0, which will be denoted
by H(k). For k = 0 we have the Euclidean plane and for k = — 1 we have the
hyperbolic plane.
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The lemmas of Section 3 show that, instead of the circle of the example above,
we may take any convex domain which expands to the whole plane; the limits of
the expected values do not depend on the shape of these convex domains.

2. Random lines in the Euclidean and hyperbolic plane: compilation of known
formulas

The formulas and results of this section can be seen in [11].

Consider the plane of constant curvature k < 0. Let p, ¢ be the polar coordinates
(or “‘geodesic’’ polar coordinates) of the foot of the perpendicular from the origin
to the line G (Figure 2). Then, the density for the lines is

.1) dG = cosktpdp/\dé.

8

0 p\ X

Figure 2

The measure of a set of lines is defined as the integral of dG over the set and it
is the unique, up to a constant factor, which is invariant under motions in H(k).
For the Euclidean plane, k = 0, we have

2.2) dG = dp A\d¢
and for the hyperbolic plane, k = — 1, since cos ix = cosh x, we have
2.3) dG = coshpdpA\d¢ (p20, 03¢ s 2n).

-
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If the line G is determined by the abscissa x of the intersection point P of G
with a fixed line Ox through the origin O (Figure 2) and the angle 6 between G
and Ox, an easy change of coordinates yields

(2.4) dG=sin 0 dxA\dd (050 ).

This expression for the density of lines holds for any k. However, fork = —1,
there are lines G (forming a set of measure o) which do not intersect Ox, so that
the coordinate system x,8 is not admissible for all the lines of the hyperbolic
plane.

From (2.4) we deduce the following mean values referring to the angle 8 between
a fixed line and a random line G which intersects the line:

.5) E@) =% J;'Osinede = ir, E(l/sinf)= }J: df = in,

Notice, moreover that 0%(6) = }n2 — 2, These mean values will be used later.

With the density (2.1) one can prove that the measure of the set of lines which
intersect a convex domain K, is equal to the perimeter L, of K, ( = length of
the boundary 9K,), that is

dG=L,.
2.6) Ianloiﬁ °

Hence, if K < K, is a convex domain of perimeter L, the probability that a
random line intersecting K, also intersects K is L /L, (independent of the position
of K within K,) and, therefore, given n random lines intersecting K, the number
m of these lines hitting K has a binomial distribution (n,L/L,) and its mean
value is

@7 Exa(m) = I..

Moreover, if s denotes the length of the chord determined by G on K, we have
([7), page 25)

29 L $dG = % F,,

nKovgy
where F, is the area of K,. Hence, the mean value of s is
(2.9 Eg,(s) = nFy /L.

Assuming that K, expands to the whole plane H(k), in a sense that will be made
precise in the next section, and that # - co in such a way that

n

(2.10) i

- 44, A =constant
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the number of lines intersecting K is Poisson distributed with parameter $4L,
i.e., the probability that X is intersected by exactly m lines is (independently of
the position of K in the plane)

(2.11) P, = (m!)" ' (FAL)"e "2,
and the mean value of m is
(2.12) E(m) = $AL.

One says that a Poisson line system is generated in H(k) or, following Miles [6],
and taking (2.3) into account, that we have in H(k) an isotropic homogeneous
Poisson line process corresponding to a Poisson point process of intensity
44 cosh p in the (p,¢)-strip (0 < p < 0, 0= ¢ < 2n).

If K reduces to a line segment of unit length we have L = 2; hence, 4 is equal
to the mean number of lines which are intersected by an arbitrary segment of unit
length. As a consequence we have that the points of intersection of an arbitrary
line with the lines of the system of random lines constitute a Poisson process of

parameter A.
Other formulas that we shall use referring to planes of constant curvature are

the following. The arc element ds on H(k) has the form
(2.13) ds® = dp* + k™ sin2k*pd¢?,

where p,¢ are geodesic polar coordinates. The element of area at the point

P(p, §) writes
(2.18) dP = s“‘" L dpNds.

From (2.13) and (2.14) it follows that the perimeter and the area of a circle of
radius p are, respectively

2* sinktp, Fo= —(l — coskip).

(2.15) Le= p

Between the perimeter L and the area F of a convex domain K we have the
isoperimetric inequality

(2.16) L?—4nF + kF? 20,

where the equality sign holds if and only if K is a circle.

Finally let us recall the following formula of Gauss-Bonnet for planes of
constant curvature. Let K be a domain of H(k) bounded by a single curve oK.
If 9K is smooth and x, denotes its geodesic curvature, the classical Gauss-Bonnet

formula gives
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(2.17) J; Kk,ds = 2rn — kF.
[

If K is a convex polygon with N vertices and 6, (h = 1,2, -++, N) are its interior
angles, then the formula of Gauss-Bonnet takes the form

N
(2.18) —kF=(N=2)n— X 0,
h=1
For (2.17) and (2.18) see, for instance, Guggenheimer ([3], page 283).
3. Two lemmas

Consider first the Euclidean plane k = 0. Let K(f) be a family of convex
domains depending upon the parameter ¢. Let Fo(t) be the area and L(1) the
perimeter of Ko(t). Assume that for any point P of the plane, there is a value tp of
t such that, for all £ > ¢, we have Pe K(¢). That means that K(t) expands over
the whole planec H(k) as t— 0.

Lemma 1. In the Euclidean plane we have

. Fot)
@1 Jim T =

independently of the shape of K(t).

Proof. Let C(1) be the greatest circle contained in K,(f) and let R(?) be its
radius. Let O be the center of C(f) and let h, = h{(¢) be the support function of
K(t) with respect to the origin 0. We have

G2) F)= } J; _ h@)ds,

where ds, is the arc element of K, at the contact point of the support line
perpendicular to the direction ¢. Since h(¢) 2 R(t) we get Fo(t) 2 $R(1)Lo(t)
and because R(f) = o as t— oo we get (3.1). Notice that the limit of the ratio
Fo /L% may haveany value < 1/4r depending on the shape of K(t). Notice, also,
that (3.1) is not necessarily true for non-convex domains.

Let us now consider the hyperbolic plane H(— 1). With the same conditions as
above, the isoperimetric inequality (2.16) gives

. Fo(D)
o h _o'— lc
(3.3 n L)) =
For simplicity, in the case of the hyperbolic plane instead of convex domains,
we shall always restrict ourselves to the so-called h-convex domains, or domains
which are convex with respect to horocycles (i.e., such that for each pair of points
4, B belonging to the domain, the entire segments of the two horocycles 4B also
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belong to the domain) (see [13]). Any h-convex domain is convex, but the converse
is not true. If the boundary dKj is smooth, the necessary and sufficient condition
for h-convexity is that the curvature of dK, (geodesic curvature) satisfies the
condition x, & 1. For instance, the circles are all h-convex. The Gauss-Bonnet
formula (2.17) then gives lim,, ., (Fo /L,) 2 1 and hence, taking (3.3) into account
we have that for all A-convex domains which expand to the whole hyperbolic
plane,
. Fo(t)

34 "2 Lt

Further, for h-convex domains the diameter D, and the perimeter L, satisfy
the inequality L, = 4 sinh}D, (see [14]) and thus

. Do(1)

3.5 oo 0 Ry

Though we have proved (3.4) and (3.5) for h-convex domains with a smooth
boundary, since any convex domain may be approximated by convex domains
with smooth boundaries and F,, L,, D, are continuous functionals, it follows
that (3.4) and (3.5) hold for any h-convex domain. We conjecture that (3.4) and
(3.5) hold for any family of convex domains.(not necessarily h-convex) which
expand to the whole hyperbolic plane. However the proof seems to be rather
involved, so we shall restrict attention to h-convex domains. As a matter of fact
it would be sufficient to consider the family of circles of radius ¢, but we think
that it is worthwhile to point out the independence of the shape of K(¢) for the
limits of Sections 4 and 5.

We can state the following result.

Lemma 2. In the hyperbolic plane, given a family of h-convex domains
Ko(#) such that Ky(t) expands to the whole plane as t - oo, then the Relations
(3.4) and (3.5) hold.

Notice that (3.1) and (3.4) can be condensed into

. Fo(t)
3.6 lim =% = k|-t
.6) lim T = Il
Using (2.15), one can easily verify (3.6) when K(¢) is a circle of radius ¢.
4. First mean values

Let K, be a convex domain of H(k). Let F, be the area and L, the perimeter
of Ko. Let G, (i = 1,2,+--,n) be n lines which intersect K, and let V be the number
of intersection points G,N G, which are inside K,. We want to compute the
integral

@.1) I= L“ ,, V4G1AdG:A - \dG,
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extended over all the lines G, which intersect K, (h = 1,2,:+,n). Let ¥, be the
function of G, G, which is equal to 1 if G;N G, € K, and is equal to 0 otherwise
(set V,, =0 for completeness). We have V = X, V;, and

I = jn(n—1) J' VydGy AdG, A -+ \dG,

“.2) tn(n —DLY"? f v, dGAdG, = n(n — 1) Ly22 J' 5,dG,

= n(n — 1)nF,L}y~3,

where s, denotes the length of the chord G, K, and the integrals are extended
over all the lines which intersect K,.
Since, by (2.6)

“4.3) f dG,\dG, \ --» AdG, = L3,
[/ %.Y.4.7"]

we obtain the following result:
Given independently and at random n lines which intersect a convex domain
K,, the expected number of intersection points of these lines which are interior

to K, is
F
(4.4) Eg, V)= an(n — 1) -—L’—g .

Note. Let Ky(f) be a family of convex (or h-convex) domains which expand
to the whole H(k) as t — co. For the Euclidean plane the limit of Ex, (V) as
t —+ oo depends on the shape of K(f) and we can only affirm that it is at most
4n(n — 1). On the other hand, for the hyperbolic plane, according to (3.4), the

limit is 0, independently of the shape of K(f) (assumed h-convex).
The same method leads to the evaluation of

@5 L= VGAGA - NG,
GrnnKov

In fact we have V2 = (Z;;V;)* = T, V3 +2 IV, ¥, where in the second
sum the range of indices assumes i < j, k < land thecasesi = k,j = lare excluded.
Thus

I, -deGxA-~'AdG.+2 fZV,,V.,dG./\--./\dG,

@6) = n(n— DaFLy? +2L'.,"( :) 3 J' Vi VudG\dG,\dG,AG,

+215° (3) 3 [ vuadoinda G,
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where in the first integral of the last term the factor 3 arises from the possibilities
VisVais VaVi, VuVa (assuming i < j < k <) and in the second integral the factor
3 arises from the possibilities V,;Vy, V,,Vy, V4V, . Performing the integration
we get

(47) Iy=n(n—DF s + 24( ";) nFI I + 24( ;’) L? J' $*dG,
GnKovnQ

where s is the length of the chord G N K,,. Division by (4.3) yields

(4.8) E,o,,(Vz)=1m(n—l)%+24n’(:) i‘ + 24(3)Lo'3f s2dG.
0

GnKo¥y
If D, is the diameter of K, we have [s2dG < D, fsdG = nF,D, and therefore

FoDo
Ly

F F3
2 - ) 2 1o
4.9) Eg, i(V?) < nn(n l)fg-+24" (4) Iy +24(3)
These formulas are valid for any convex domain of H(k). Assume now, that in
the case k <0, K, is h-convex. Furthermore suppose that K, is dependent on a
parameter ¢t and that K,(f) expands to the whole plane as t — co. Assume further
that n increases with ¢ in such a way that

n(t)
@10 i L™
where 4 is a constant. According to Section 2 we get an isotropic homogeneous
Poisson line process of parameter 4, i.¢., such that 2 is equal to the mean number
of lines intersecting an arbitrary segment of unit length.
For the random variable V/F,, depending on ¢ (and therefore on n, by (4.10))
we have, using (4.9) and (3.5),

) 14 . mn(n—1)
(4.11) lim Eg,, (—) = lim ——— = }nA?
d =0 Ko F 0 1o LO
an
: 21 (Vv 3 Vz L z=
@12 limod) () = tim [Ex () ~Ehea(rr) | =0

It follows that, for any convex (or h-convex) domain K(t) which expands to
the whole plane we have, with probability one,

(4.13) lim —;,'- = §nA3,

>0 0

From (4.13), (4.10) and (3.6) we get, with probability one,

\ Ly Fo _ 2|kl
4.14 I _’L i n 0 .
(@.14) m = M F VA
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Note, for later use, that (4.13) gives the mean number of intersection points of
two lines per unit area in H(k) and therefore the probability that a random element
of area do in the plane contains an intersection point of two lines, is

(4.15) iniide.

5. Mean values for the regions into which a convex (or i-convex) domain is
divided by random lines

Consider the plane of constant curvature k and a convex (or h-convex) domain
K, = K(t) in it. We desire to study some mean values concerning the regions into
which K, is divided by n random lines G, which intersect K,. Assume that there
are not three or more lines intersecting in a common point of K, (according to
the measure defined in Section 2, these lines form a set of measure zero). The
chords G, N K, and the boundary dK, form a plane graph which has V + 2n
vertices (V vertices which are interior to K, and 2n vertices on 0K,). The num-
ber of sides of the graph is clearly 4 (4V + 6n) = 2V + 3n. Therefore, calling P
the number of regions into which K is partitioned by the random lines, the clas-
sical Euler’s formula (regions —sides + vertices=1) gives P -2V —=3n+ V + 2n
=1 and we get

(5.1) P=V+n+l.

For instance, in the case of Figure 1 we have n =6, V = 6, P = 13, number of
sides = 30.
The equality (5.1) and (4.4) give

(5.2 Eg, f(P)=7n(n—1) TFzQ +n+1,
: 0

which is the mean value of the number of regions into which a convex domain
K, is partitioned by n random lines which cross it.

Assuming that Ko(f) expands to the whole plane H(k) as ¢ - o with the Con-
dition (4.10), the mean number of regions per unit area will be (using (4.13) and

3.6)
. P .. |4 n Ly 1
5.3 lim ——=lxm(—+—_.__+___)_ 2 + 31 lk|t
and hence the limit of the mean area A of the regions into which K is partitioned
is

4
. - .
G4 E¥(4) A2 + 2 k|t
As in (4.11) and (4.14) the limit (5.3) (and hence (5.4)), like the following limits

(5.6) and (5.7) are limits “‘in probability*’, i.e., the equality occurs with probability
oane.
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Let now N, be the number of vertices of the ith region (i = 1,2, ---, P). We have

4
(5.5) LN =4V +4n
im1
and therefore the limit of the mean number of vertices of a region with the
boundary regions included, is '

. 4V +4n . 4V + 4n
* - — == — ==
(5:6) E*N) ,l.'.l: P ,lf.'?,, V+n+l
Finally, if s, is the length of the chord G; N K, the sum of the perimeters of the
regions, for a given set of lines G,, G,,---,G, which cut K, is 2Xs,+ Lo
(i=1,2,-.-,n) and thus

. 2Es;+L, . 2Xs/n+Ly/n
5.7 L) = lim 22%tLlo o 2Zs/nt Lol
G EL) = lim —5 m T+ 1/n

and, since lim, ,(Lo /n) = 24, lim,, ,(V [n) = = [2| k [}, lim, . ,[Zs;/n] = limit
of the mean length of the chords G,N K, = lim,, (nF,/Ly) == /|k|*, we get

ory o AT+ 4|kt
(5.8) E*(L) PESYTPAT +2J.|k|*'

The limit second order moments E*(A42), E*(AL), E*(L?),--+ for regions, are
known for the Euclidean plane, because they coincide with the second order
moments for polygons and they have been given by Miles ([4], [5]). For the
hyperbolic plane we only know E*(4?) and we have E*(42?) < oo if and only if
A > ¥(cf. [12]). Moreover, for the hyperbolic plane we do not know if these
limit second order moments are dependent or not on the shape of the expanding
domain K(1).

6. Mean values for polygons determined by random lines

Consider the Poisson line system described in Sections2and 4, which partitions
H(k) into an aggregate T of random convex polygons. Our object is now to
investigate some mean values of certain quantities Z attached to each polygon,
the basic ones being the area A, the perimeter L and the number of sides (or
vertices) N.

To this end, the natural way should be to consider first the subaggregate of
polygons T, having at least one point in common with Ky(f) and then make
t — oo, However in this case it seems to be difficult to compute directly the empiric
averages X,Z/ X1 (X,Z = sum of Z-values for the polygons of T,) and we must
follow an indirect method which makes necessary the introduction of certain
assumptions.
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Let F; (z) (z is a particular value of Z) be the empiric distribution function of
Z for the finite aggregate T, (Fz (z) depends on the way of selecting the random
polygons). Then we make the assumption that for each Z there exists a distribution
function F(z) such that F; () tends almost surely to F,(z) as t - co and, more-
over, the empiric averages X,Z/Z,1 converge almost surely to the ergodic mean
{ ZF(dz).

For details about these assumptions and their proof for the Euclidean plane,
together with some deep reasons for their plausibility in general, see Miles
([4), [5], [6] and [8]).

We will first consider the following mean values, depending of the way of
selecting the random polygons.

(a) Select at random a point on the plane and consider the value of Z of the
polygon which contains the point. The corresponding mean value will be denoted
by E(Z), Z=A, L, N.

(b) Select a vertex at random (i.e., an intersection point of two lines) and, with
probability }, select one of the four polygons having this vertex. This procedure
gives rise to the mean values which we will denote by Ex(Z).

(c) Select at random a point on one of the lines and then, with probability 4,
select one of the two polygons which contain the point in its boundary. We call
E(Z) the corresponding mean value,

Of course these mean values presuppose that the stated selections are meaning-
ful, in particular, the assumption that it is meaningful to select a random vertex
of T.

We proceed to compute these mean values.

Method (a). Given a random line G, the intersection points of G with the
lines G,, G, - of the Poisson line system which determines T are distributed
according to a Poisson distribution of parameter A. Therefore, given a random
point P on the plane and a random line G through P, the probability that the
distance from P to the first intersection point of G with T lies in the interval p

p+dp(p20),is -
(6.1) Ae~*dp,
According to (2.14) the area of the polygon which contains P will be

2% pp oin Lt 2z
(6.2) A= L _L ’“,‘: LapNdp=k=t [ (1 - corktp)as,
and therefore, by (6.1),
2z p®
(6.3) E(A)= k"J; J; Ae~*(1 - cosktp)dp\dé.

Performing the integration we get
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(6.4) E(A) = for 25 |k|t, E{(4)= p_z"_

% for ).>|k|*.

In order to compute E (L) we apply (2.13) and calling « the angle of G with the
side of the polygon at the intersection point (Figure 3), we have

=sinktp 1

Figure 3

Since p and « are independent, taking (2.5) into account, we have

i =[5  1)

(6.6)
2 p®
= (nA[2k) f f e~Msinktpdp\d¢,
[+] (]
and therefore
72l
6.7 E(L)= o for A 5 |k|t, E(L) = TR for 2> |kt

We now proceed to compute E,(N). Consider the random variable u(do(Q))
associated to each area element da(Q) of the plane, defined as 1 if the area element
do(Q) contains a vertex of T and the segment PQ does not intersect any line of T,
and O otherwise. According to (4.15) and since the probability that a segment




Averages for polygons formed by random lines in Euclidean and hyperbolic planes 153
PQ of length p does not contain any point in a Poisson process with parameter A
is equal to e**, we have

-]

28 po
(6.8) E(N)=1% f f nlle ¥dg = yk~4r2}2 f e *sin kpdp
(1] 0 (4]

or

n2A?
20 + k)
Method (b). We now select at random a vertex @ of the system of random

polygons T. By (2.14) if @ denotes the interior angle of the polygon corresponding
to the vertex Q, we have

(6.9) E(N)= oo for A< |k[¥, E(N) = for 4> |k|.

[}
(6.10) A=kt f (1 — cosktp)dd
0
and thus, by (6.1) and (2.4) we have

Ex(4) = k- L ‘3 [ J': J’: ).e""(l—cosk*p)dp/\dd)] sin0.do

(6.11) = (2k)-! f ® 2e7(1 — cosk¥p)dp J' 8sin 640
(1] [1]
=} EA(A)
and thus
(612)  Ey(4) = oo for AS|k[t, Ex(4)= ﬁ for 2> |klt.

To compute Ey(L) we observe that the sides opposite to the chosen vertex Q, by
similar considerations as above, give the term }E (L) and the sides which are
adjacent to Q give the mean length 1/1. Thus we have, Ey(L) = o for A 5 | k|
and

(6.13) EfL)=4E(L) +2/a= 8)A% + 8k

for A>|k|t

AT+ R
Similarly, we get Ey(N) = oo for S |k|* and
2 4 2422 4 24k
610 E =1 +3 = E LT BE or a5 (s

where the term E (N) stands for the vertices which are opposite to Q and the term
3 stands for the two vertices adjacent to Q and for Q itself.

Method (c). By similar considerations as above we get the remaining mean
values:
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n

(6.15) E(A) = $1E(A) bt A>|k|*
2 2

(6.16) ELL) = 3E(L) +2/A 3(%)‘%' A> [k
2 4 8)A2 + 8k

(6.17) E\(N) = $E(N) + 2 = (’FTP)—H?)" . A> k|t

For A S | k|* these mean values are all 0.
Notice that in the case of the hyperbolic plane, k = — 1, in order to obtain a
finite value of the means E,, Ey, E, we must have 1 > 1.

Alternative proof. We are indebted to the referee for the remark that all the
preceding mean values can be deduced from E,(A) using a very ingenious device
due to Miles [5]. Indeed, select a random vertex of T, say Q, and denote by
P, P, in order about @, the four polygons having @ as common vertex.
Then Pyy34 =P, UP, UP;UP,is arandom polygon selected by method (a);
Py =P, UP,, Py, =Py P, are random polygons selected by method (c) and
P,, P,, P,, P, are random polygons selected by method (b). Using these remarks
one can deduce some relations between the means E,, Ey, E; which determine
all of them from E,(A). Though this method is more elegant and shorter, the
proofs given above are perhaps more natural and straightforward.

7. The second moments

Let dF (A, N,L) denote the probability that the polygon chosen according to
method (a) has area between A and A4 + dA, perimeter between L and L + dL and
has N vertices. Similarly, let dF (A, N, L)and dF,(A, N, L) denote the analogous
probabilities for the polygons chosen with methods (b) and (c). We have made
the assumption that all such probabilities exist.

Let dF(A, N, L) denote the probability that a random polygon of T has area
between A and A + dA, perimeter between L and L + dL and has N vertices.
Here the method of sampling a random polygon has the following sense: we
consider first the finite number of polygons which intersect a convex (or h-convex)
domain K(t), all equally likely; for this finite set the probability dF,(A4, N, L)
has a well-defined meaning and then dF(A, N, L) is the limit value of this proba-
bility as t — oo, so that K(t) expands to the whole plane H(k). Our assumption
is that this limit exists almost surely.

Since the probability that a randomly chosen point on the plane belongs to a
polygon of area A is proportional to A4 (i.e., the probability of choosing a polygon
of area 4 by method (a) is proportional to 4), we have the equation

AdF(A,N,L)

(7'1) dFA(A’ N-L) - E(A) ’
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and similarly

NdF(A,N,L)

I.dF(A,N,L)
E(N) TED

E(L)

Multiplying (7.1) and (7.2) by A, L, N and integrating over all values of A,
N, L we get

(13)  E(4?) = E(A) E4), E(LA) = E(4) E(L), E(NA) = E(A) EAN),
(7.4) E(AN) = E(N) Ex(A), E(LN) = E(N)E\(L), E(N?) = E(N) Ex(N),
(1.5) E(AL) = E(L) E\(A), E(L*) = E(L) E,(L),E(NL) = E(L) E,(N).
From these relations we deduce
E(A) E(L) = E(L) E(4),
(7.6) E(N) Ex(4) = E(4) E(N),
E(L) E(N) = E(N) EXL),

(7.2) dF (A,N,L) = , dF (A,N,L) =

which yield the identity
(7.7) E(L) EX(A) E(N) = E(A) E(N) Ex(L)

which can be directly verified from the results of Section 6.

The identity (7.7) shows that the Equations (7.6) are not independent and
thus they are not sufficient for computing the mean values E(A), E(N), E(L). It
seems very plausible that a new relation must be given by the Gauss-Bonnet
formula (2.18). Indeed calling A, N, the area and the number of vertices of the
polygons having at least one point in common with Ko(t) (i = 1,2, -+, P(t)), using
(2.18) we have

N
(7.8) —kA; = (Nl -2 - p> O (i=1,2,-, K1)
A=l
where 0, (h =1,2,::-,N)) are the interior angles of the ith polygon. Since the
total angle at a point is 2x we may accept that, almost surely,
(7.9 Z 0, is equivalent to 4x X N, as t— 0.
La ' ,
This assumption supposes that ‘‘edge effects’’ are negligible, a fact that is

surely true for the Euclidean plane, but which should be interesting to prove for
the hyperbolic plane. Accepting (7.9), then (7.8) gives

(7.10) nE(N) + 2k E(A) = 4.

This equation, together with the system (7.6) and the values of Section 6 give
the result
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4n 4n?) 8| k|
—_— EL) =~ E(N) =4 4+ —— 1 __
gk PP = wmE e B = mE
for A > (2|k|)*/x, and E(A), E(N), E(L) = oo for A £ (2|k|)*/n. Since k <0 in
the expressions above we can put |k| = —k.
Taking (7.11) into account, the Equations (7.3), (7.4) and (7.5) give the following
second order moments. For 4> 1,

(7.11) E(4) =

8n2

(7.12) E4h = (n22% — 2| k|)(A2 + k)’
4n3)

(7.13) E4L) = k@ + )’
27312

(7.14) EA4N) = s 2[kD(A* + k)’

15) py = 220+ 94+ 4k]

(n222 = 2|k|)(2* + k)’
72A[(n* + 8)A% + 8k]
(n222 = 2|k])(A% + k)’
n2A3[(n? + 24)A% + 24k]
2n?2% — 2| k|) (% + k)

and for 4 1 the six second order moments become co.

(7.16) E(NL) =

(7.17) E(N?) =

Notes. 1. For the Euclidean plane k =0, the values (7.11) coincide with the
values (5.4), (5.6) and (5.8), that is, we have E* = E. These values agree with those
given by Miles [4]. Also the second order moments (7.12),-+,(7.17), for k =0
agree with those given by Miles [4].

2. For the Euclidean plane the first and second order moments of A4, N, L are
finite for any A > 0. For the hyperbolic plane the first order moments are finite if
and only if 4 > 2%/rn = 0.450, and the second order moments are finite if and
only if 1> 1. We do not know if these critical values of A increase with higher
order moments,

The authors are indebted to the referee for many valuable suggestions and
improvements.
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