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AlMtnwt 
We consider a countable number of independent random uniform Unes in 

the hyperbolic plane (in the sense of the theory of geometrical probability) 
wbich divide the plane into an infinite number of convex polygonal regions. 
The main purpose of the paper is to compute the mean number of sides, the 
mean perímeter, the mean àrea and the second order moments of these 
quantities of such polygonal regions. For the Euclidean plane the problem 
has been considered by several authors, mainly Miles [4]-[9] who has taken it 
as the starting point of a series of papers which are the IMSÍS of the so-called 
stochastic geometry. 
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CONSTANT C U R V A T U R B ; HYPERBOUC PLANE; CONVEX DOMAINS; POBION LINE 
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1. Introductíon 

Consider the Euclidean plane uniformly coveied by random lines which will 
divide the plane into an infinite number of convex polygonal regions. This set of 
random polygonal regions was first studied by Goudsmit [2] who obtained the 
mean number of sides, the mean perimeter, the mean àrea and the mean area-
squared of the polygons. More general results were obtained later by Miles 
([4], [5])' and Richards [10]. Interesting generalizations to Euclidean n-dimen-
sional space have been established by Miles ([6], [7], [8] and [9]). 

In [12] one of the present authors studied the same problem for the hyperbolic 
plane. He considers first the regions into which a fixed circle of radius r is divided 
by n random lines and then takes the limit of the expected vàlues correspondíng 
to these regions as n and r tend to infinity in such a way that n /r tends to a finite 
constant. 

This procedure is satisfactory for the Euclidean plane. However, for the hyper­
bolic plane a more detailed study is necessary. Consider, for instance, the plane 
divided into an infinite set of convex polygons by a countable number of in­
dependent random uniform Unes and a circle of radius r placed on it (Figure 1). 
We may consider the mean àrea E*(A) of the regions into which the circle is 
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Figure 1 

partitioned and the mean área E/^Á) oí the polygons having at least one point 
ín common with the circle. In the case of Figure 1 we have the "empiric averages" 
£*(/4) = jrr*/13 and £X^) = f/13, where F is the total área of the polygons 
having at least one point in common with the circle. In the Euclidean plañe 
E*(Á) and EX^) tend to the same limit as r-» oo, while in the hyperbolic plañe 
both limits have diñerent valúes (which we will denote by E*(A) and E(A) res-
pectively). This distinction was missing in [12], where only the mean valúes E* 
were considered. The difiference arises from the fact that in the Euclidean plañe 
the edge effects on the boundary of the circle may be disregarded and in the 
hyperbolic plañe thcy may not. 

In this paper we take the problem from the beginning and consider, from a 
general point of view, the plañe of constant curvature k^O, which will be denoted 
by Hik). For fc » O we have the Euclidean plañe and for fc » — 1 we have the 
hyperbolic plañe. 
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The lemmas of Section 3 show that, instead of the circle of the example above, 
we may take any convex domain which expands to the whole plane; the limits of 
the expected vàlues do not depend on the shape of these convex domains. 

2. Random Unes in the Endidean and hyperbolic plane: compilation of known 
formulas 

The formulas and results of this section can be seen in [11]. 
Consider the plane of constant curvature k^O. Let p, <̂  be the polar coordinates 

(or "geodèsic" polar coordinates) of thefoot of the perpendicular from the origin 
to the line G (Figure 2). Then, the density for the Unes is 

(2.1) dG - i:osk*pdpf\d(f>. 

Figun 2 

The measure of a set of Unes is deñned as the integral of dG over the set and it 
is the imique, up to a constant factor, which is invariantundermotioos in H(A;). 

For the Euclidean plane, fc « 0, we have 

(2.2) dG-dpAd^ 

and for the hyperbolic plane, fc >• — 1, since cos ix » cosh x, we have 

(2.3) dG-coshpdpAd^ (p2íO, 0^<t>^2n). 
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If the Une G is determined by the abscissa x of the intersection point P oi G 
with a fixed Une Ox through the origin O (Figure 2) and the angle 9 betwecn G 
and Ox, an easy change of coordinates yields 

(2.4) í/G - sin e dxAdO (0^6^ n). 

This expression for the density of lines holds for any k. However, for ik = - 1 , 
there are Unes G (forming a set of measure oo) which do not intersect Ox, so that 
the coordinate system x,9 is not admissible for all the lines of the hyperbolic 
plane. 

From (2.4) we deduce the following mean vàlues referring to the angle 0 between 
a fixed Une and a random Une G which intersects the Une: 

(2.5) E(d) - i J esinOde - in, £(l/sin 0) - i CdO = in. 

Notice, moreover that ff\d) = ^n^ - 2. These mean vàlues will be uscd later. 
With the density (2.1) one can prové that the measure of the set of Unes which 

intersect a convex domain ÍCQ is equal to the perimeter LQ of JCQ ( - length of 
the boundary dK^), that is 

(2.6) L.o./''"'"" 
Henee, if X c XQ is a convex domain of perimeter L, the probability that a 

random line intersectingXo also intersects K is L/LQ (independent of the position 
of K within Ko) and, therefore, given n random lines intersecting Kg, the number 
m of these Unes hitting X has a binomial distribution (n,LIL(,) and its mean 
valué is 

(2.7) £,,K,(m) - ^ . 

Moreover, if s denotes the length of the chord determined by G on Ko, we have 
([7], page 25) 

,,»x I sdG-nFo . 

where FQ is the àrea of KQ. Henee, the mean valué of s is 

(2.9) EgJis)~nFJLo. 

Assuming that KQ expands to the whole plane H(k), in a sense that wiU be made 
precise in the next section, and that n -» oo in such a way that 

(2.10) r--*iK A - constant 
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the number of Unes intersecting K is Poisson distributed with parameter ^AL, 
í.c, the probability that K is intersected by exactly m lines is (independently of 
the position of K in the plane) 

(2.11) P . = (m!)-HiAL)"c-"•/', 

and the mean valué of m is 

(2.12) £(m) = ÍAL. 

One says that a Poisson Une system is generated in H(k) or, following Miles [6], 
and taking (2.3) into account, that we have in H{k) an isotropic homogeneous 
Poisson line process corresponding to a Poisson point process of intensity 
\k cosh p in the (p,0)-strip ( O g p £ o o , 0 ^ ( ^ ^ 27t). 

If K reduces to a line segment of unit length we have L = 2; henee, A is equal 
to the mean number of lines which are intersected by an arbitrary segment of unit 
length. As a consequence we have that the points of intersection of an arbitrary 
line with the lines of the system of random lines constitute a Poisson process of 
parameter X. 

Other formulas that we shall use referring to planes of constant curvature are 
the following. The arc element ds on H{k) has the form 

(2.13) ds^ = dp^ + k-hÍTi^k*pd<l>^, 

where p,4> are geodèsic polar coordinates. The element of àrea at the point 
P{p,(f>) writes 

(2.14) dP = ! Í l l ^ d p A # . 

From (2.13) and (2.14) it follows that the perimeter and the àrea of a circle of 
radius p are, respectively 

(2.15) Lc = -?Jsínit*p. Fe = ^ ( 1 - c o s k*p)-
k* k 

Between the perimeter L and the àrea F of a convex domain K we have the 
isoperimetric inequaUty 

(2.16) L*-4nF + kF'èO. 

where the equality sign holds if and only if X is a circle. 
Finally let us recali the following formula of Gauss-Bonnet for planes of 

constant curvature. Let K be a domain of H{k) bounded by a single curve dK. 
If dK is smooth and K, denotes its geodèsic curvature, the classical Gauss-Bonnet 
formula gives 
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(2.17) f K^s = lTi-kF. 
JdK 

If *: is a convex polygon with N vértices and 0» {h = 1,2,--,N) are ¡ts interior 
angles, then the formula of Gauss-fionnet takes the form 

(2.18) -kF = iN-2)n- í 0» 

For (2.17) and (2.18) see, for instance, Guggenheimer ([3], page 283). 

3. Two lemmas 

Consider first the Euclidean plañe /c = 0. Let JÍ:O(0 be a family of convex 
domains depending upon the parameter t. Let f o(0 be the área and L^it) the 
perimeter of Kf^t). Assume that for any point P of the plañe, there is a valué <, of 
t such that, for all t > t,, we have P e /Co(0. That means that Ko{t) expands over 
the whole plañe H(k) as t-*oo. 

Lemma 1. In the Euclidean plañe we ha ve 

(3.1) lim "̂̂ '̂  
l-»co -^oiO 

independently of the shape of K(¡(t). 

Proof. Let C{t) be the greatest circle contained in K^Jit) and let R{t) be its 
radias. Let O be the center of C(/) and let h, = hl4>) be the support function of 
JCo(0 with respect to the origin O. We have 

(3.2) F o ( 0 - i f /i,(^)</s„ 

where ds, is the are element of dK^ at the contact point of the support Une 
perpendicular to the direction ^. Since hl4,) ^ R{t) we get Fo(t) ^ \R{t)Lo{t) 
and because /? (0-^« as í - oo we get (3.1). Notice that the limit of the ratio 
Fo/L'o may have any valué g 1/4^ depending on the shape of Ko{t). Notice, also, 
that (3.1) is not necessarily true for non-convex domains. 

Let US now consider the hyperbolic plañe H{- 1). With the same conditions as 
above, the isoperimetric inequality (2.16) gives 

(3.3) Um ^ á l . 
r-»eo '^*) 

For simplicity, in the case of the hyperbolic plañe instead of convex domains, 
we shall always restrict ourselves to the so-called A-convex domains, or domains 
which are convex with respect to horocycles (í.e., such that for each pair of points 
A,B bclonging to the domain, the entire segments of the two horocycles AB also 
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belong to the domain) (see [13]). Any /i-convex domain is convex, but the converse 
is not true. If the boundary dK(¡ is smooth, the necessary and sufücient condition 
for /t-convexity is that the curvature of d^o (geodèsic curvature) satisñes the 
condition K, ^ 1. For instance, the circles are all h-convex. The Gauss-Bonnet 
formula (2.17) tben gives lim,^., (FQ /LQ) ^ 1 and henee, taking (3.3) into account 
we have that for all /i-convex domains which expand to the whole hyperbolic 
plane, 

(3.4) "»r?íT= -̂
Further, for fi-convex domains the diameter DQ and the perimeter LQ satisfy 

the inequality LQ ̂  4 sinh^Dg (see [14]) and thus 

Though wc have proved (3.4) and (3.5) for /i-convex domains with a smooth 
boundary, since any convex domain may be approximated by convex domains 
with smooth boundaries and FQ, LQ, DQ are continuous functionals, it foUows 
that (3.4) and (3.5) hold for any /i-convex domain. We conjecture that (3.4) and 
(3.5) hold for any family of convex domains. (not necessarily A-convex) which 
expand to the whole hyperbolic plane. However the proof seems to be rather 
involved, so we shall restríct attention to A-convex domains. As a matter of fact 
it would be suficient to consider the family of circles of radius t, but we think 
that it is worthwhile to point out theindependence of the shape of Xo(0 for the 
límits of Sections 4 and 5. 

We can state the following result. 

Lemma 2. In the hyperbolic plane, given a family of A-convex domains 
Xo(0 such that K^t) expands to the whole plane as (-»oo, then the Relations 
(3.4) and (3.5) hold. 

Notice that (3.1) and (3.4) can be condensed into 

Using (2.15), one can easily verify (3.6) when Xo(0 is a circle of radius (. 

4. First mean valoes 

Let XQ be a convex domain of H{k). Let FQ be the àrea and LQ the perimeter 
of Ko' Let G|(í B 1,2, • ••, n) be n Unes which intersect KQ and let V be the number 
of intersection points GiCtGj which are inside KQ» We want to compute the 
integral 

(4.1) / - f VdG,^dG^^^^•^dG, 
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extended over all the Hnes G„ which intersect K^ {h = 1,2, ••-,«). Let Ky be the 
function of G„ Gj which is equal to 1 if C, n Ĝ  6 KQ and is equal to O otherwise 
(set Ku = O for completeness). We have V = É,<^ V¡j and 

/ = in («- l ) J V,jdG,/\dG2A-/\dG, 

(4.2) = M" -Oí-r' J VtjdG,/\dGj = in(n - D L ; " ' 2 J s,dG, 

= n(n - l)jrFoL"o"', 

where s, denotes the length of the chord G,n Ko and the integrals are extended 
over all the Unes which intersect KQ. 

Since, by (2.6) 

(4.3) í dGi/\dG2A-'AdG,~L'o, 

we obtain the following result: 
Given independently and at random n Unes which intersect a convex domain 

Ko, the expected number of intersection points of these Unes which are interior 
to KQ, is 

(4.4) JSit,. .XíO-Jtn(«-l)TI-

Note. Let Ko(t) be a famlly of convex (or h-convex) domains which expand 
to the whole H(k) as «-• oo. For the Euclidean plañe the limit of £]to(o.ii(^ ^' 
t-*<x3 depends on the shape of Xo(0 and we can only affirm that it is at most 
in(n - 1). On the other hand, for the hyperbolic plañe, according to (3.4), the 
limit is O, independently of the shape of Koit) (assumed /i-convex). 

The same method leads to the evaluation of 

(4.5) h - f V^dG.AdGiA- AdG,. 
J<h,f\Ko*e 

In fact we have V* - (XKJVHY - I,<^V5 + 2 IfyK„.! where in the second 
sum the range of índices assumes i<J,k<l and the cases i » fc,y - I are excluded. 
Thus 

/ , - jvdCA - AdG, + 2 f ZKyVtHÍG, A - AdGn 

(4.6) - n{n - XW^Üo^ + 2L"o-*[ j ) 3 J V,jV,^G,AdGjAdG,AdG, 

+ 2L"o-' ( J ) 3 f V,jV„dG,AdGjAdG„ 
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where in the fírst integral of the last term the factor 3 arises from the possibilities 
yij^kt. ^» ̂ ji. «̂̂ 7» (assuming i <j <k<l) and in the second integral the factor 
3 arises from the possibilities V,jV„, V,jVj,, VaVj,. Performing the integration 
we get 

(4.7) I2r.n(n-^)nFo^r^ + 24("^n^FlI:!r* + 24(fjLr'Í ^^ sHG, 

where 5 is the length of the chord G OXQ. División by (4.3) yields 

(4.8) Ï,^K., = .,(„-I)^^24,= (;) f ^«(,")V1„^,/^G-

If Do is the diameter of KQ we have ^s^dG ^ DQ jsdG = nFoDo and thcreforc 

(4.9) E,aV')ènn(n-l}^ + 24n^("^) ^ + 24("^)n^. 

These formulas are vàlid for any convex domain of H{k). Assume now, that in 
the case k <0, Ko is /i-convex. Furthermore suppose that KQ is dependent on a 
parameter t and that KQO) expands to the whole plane as t -»oo. Assume further 
that n increases with t in such a way that 

(4.10) Hm ^ . = » i A . 

where A is a constant. According to Section 2 we get an isotropic homogeneous 
Poisson line process of parameter X, i.e., such that X is equal to the mean number 
of lines intersecting an arbitrary segment of unit length. 

For the random variable F/FQ, depending on t (and therefore on n, by(4.10)) 
we have, using (4.9) and (3.5), 

(4.11) l im£ , , . ( i l ) = Hm Í Í ! Í ^ = i«A' 
»-»oo \ ' o / í-»» ^0 

and 

(4.12) ;¡j.¿;{^). .ta [E.. , .(9-ÍL..(^)] .0. 
It follows that, for any convex (or /i-convex) domain Xo(0 which expands to 

the whole plane we have, with probabiUty one, 

(4.13) Hm -^-iJtA». 

From (4.13), (4.10) and (3.6) we get, with probabiUty one, 

íAiAs I- » ,. n Lo Fo 2\k\* 
(4.14) i ^ _ „ , ^ _ _ . _ . _ ^ . 
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Note, for later use, that (4.13) gives the mean number of intersection points of 
two Unes per unit àrea in H{k) and therefore the probability that a random element 
of àrea da in the plane contains an intersection point of two Unes, is 

(4.15) ^nX^da. 

S. Mean vàlues for the regions into which a convex (or /i-convex) domain is 
divided by random lines 

Consider the plane of constant curvature k and a convex (or fi-convex) domain 
Xo = Ko{t) in it. We desire to study some mean vàlues conceming the regions into 
which Ko is divided by n random lines G, which intersect KQ. Assume that there 
are not three or more lines intersecting in a common point of K^ (according to 
the measure deñned in Section 2, these lines form a set of measure zero). The 
chords G, O KQ and the boundary dK^ form a plane graph which has V + 2n 
vértices (K vértices which are interior to KQ and 2n vértices on dKo). The num­
ber of sides of the graph is clearly i (4K + 6M) =» 27 + 3n. Therefore, calling P 
the number of regions into which KQ is partitioned by the random lines, theclas-
sical Euler's formula (regions-sides + vértices=1) gives P-2V -in + V + 2n 
=> 1 and we get 

(5.1) P = K + n + 1. 

For instance, in the case of Figure 1 we have n = 6, 7 = 6, P = 13, number of 
sides a 30. 

The equality (5.1) and (4.4) give 

(5.2) JBit. n(P) = ««(« - 1) - ^ + « + 1, 

which is the mean valué of the number of regions into which a convex domain 
XQ is partitioned by n random lines which cross it. 

Assuming that Ko(t) expands to the whole plane H(k) as (-»oo with the Con-
dition (4.10), the mean number of regions per unit àrea will be (using (4.13) and 
(3.6)) 

(5.3) lim - ^ » l i m ( - / +-JL i i + 4") - in^'+\^W 

and henee the limit of the mean àrea A of the regions into which Ko is partitioned 
is 

As in (4.11) and (4.14) the limit (5.3) (and henee (5.4)), Hice the foUowing limits 
(5.6) and (5.7) are limits "in probability", i.e., the equality occurs with probability 
one. 
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Let now Nj be the number of vértices of the ith región (< = 1,2, • • •, P). We have 

r 
(5.5) I N, = 4K + 4rt 

í - i 

and therefore the limit of the mean number of vértices of a región with the 
boundary regions included, is 

AV + 4n AV + 4n 
(5.6) E\N)= Hm l L ± i í L = Hm ^ - ^ . = A. 

Finally, if s, is the length of the chord Gi n KQ, the sum of the perimeters of the 
región ,̂ for a given set of Unes Gi, G2,-",G, which cut K^ is 2£sj + Lo 
((a l,2,--sn)and thus 

(5.7) E>(L)^lim 2l5, + Lo_,.^2l5,/n-HLo/H 
, :„ V/n + 1 + l/n 

and, sjnce lim,^ JLo/n) =- 2M, lim,-,„(V/n) - }rA/2|fe|*, lim,^„[Is,/n] = limit 
of the mean length of the chords G, n KQ =» lim,^„(nf o/í-o) = ÍI/| fc |*. we get 

The limit second order moments £*(i4'), E*{AL), E*(L'),-- for regions, are 
known for the Euclidean plane, because they coincide with the second order 
moments for polygons and they have been given by Miles ([4], [5]). For the 
hyperbolic plane we only know E*(Á^) and we have E*(A^) < oo if and only if 
A > i(cf. [12]). Moreover, for the hyperbolic plane we do not know if these 
limit second order moments are dependent or not on the shape of the expanding 
domain K(^t). 

6. Mean vàlues for pdygons determined by random linea 

Consider the Poisson Une system descríbed in Sections2and 4, which partitions 
H(k) Into an aggregate T of random convex polygons. Our object is now to 
investígate some mean vàlues of certain quantities Z attached to each polygon, 
the bàsic ones being the àrea A, the perimeter L and the number of sides (or 
vértices) N. 

To this end, the natural way should be to consider first the subaggregate of 
polygons T; having at least one point in common with K^t) and then make 
t-*ao. However in this case it seems to be difBcult to compute directly the empíric 
averages £,Z/£,1 (Z^ • sum of Z-values for the polygons of T,) and we must 
follow an indirect method which makes neoessary the introduction of certain 
assumptions. 
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Let Fz,iz) (z ís a particular valué of Z) be the empiric distribution function of 
Z for the fínite aggregate T, (F2,,(z) depends on the way of selecting the random 
polygons). Then we make the assumption that for each Z there exists a distribution 
function Fz(z) such that F j / z ) tends almost surely to Fz(z) as / -» oo and, more-
over, the empiric averages £ ^ / Z , l converge almost surely to the ergodic mean 
¡ZF^dz). 

For details about these assumptions and their proof for the Euclidean plañe, 
together with some deep reasons for their plausibility in general, see Miles 
([4], [5], [6] and [8]). 

We will fírst consider the following mean valúes, depending of the way of 
selecting the random polygons. 

(a) Select at random a point on the plañe and consider the valué of Z of the 
polygon which contains the point. The corresponding mean valué will be denoted 
hy E^(Z),Z = A, L,N. 

(b) Select a vértex at random (i.e., an intersection point of two Unes) and, with 
probabilíty I, select one of the four polygons having this vértex. This procedure 
gives rise to the mean valúes which we will denote by E/^Z). 

(c) Select at random a point on one of the lines and then, with probability i , 
select one of the two polygons which contain the point in its boundary. We cali 
£f.(Z) the corresponding mean valué. 

Of course these mean valúes presuppose that the stated selections are meaning-
ful, in particular, the assumption that it is meaningful to select a random vértex 
of T. 

We prooeed to compute these mean valúes. 

Method (a). Given a random Une G, the intersection points of G with the 
lines Gi, Gj,"- of the Poisson Une system which determines T are distributed 
according to a Poisson distribution of parameter A. Therefore, given a random 
point P on the plañe and a random Une G through P, the probability that the 
distanoe from P to the first intersection point of G with T lies in the interval p 
P + dp(p^ 0), is 

(6.1) Xe-^'dp. 

According to (2.14) the área of the polygon which contains P will be 

(6.2) A - f ' r ^^dp/\d4>~k-' Ç\l - cosk*p)dtl>, 

and therefore, by (6.1), 

(6.3) E^iA) - '̂ " * f " f " -̂ «" '̂íl - <»» '^*P^ dpMÍ>' 

Performing the integratíon we get 
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(6.4) £^(^) = oc forA^lkl*. £^(/l) = 
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In order to compute E/^L) we apply (2.13) and calling a the angle of G with the 
side of the polygon at the intersection point (Figure 3), we have 

•̂ « sin k*p 1 
(6.5) r"sink* 

Jo k* sina 
d<f>. 

-̂<«-í>(̂ )̂ fcV* 

Figure 3 

Since p and a are independent, taking (2.5) into account, we have 

ŝin k*p\ 

(6.6) 

= (nXIlk*) f " f" e-%mk*pdp/\d<f>. 
Jo Jo 

and therefore 

(6.7) £^(L)-oofor Ag|fc|*. £^(L) 
X^ + k 

fer A>|fc*. 

We now proceed to compute Ex(N). Consider the random variable u(daiQ)) 
associated to each atea element da(Q) of the plane, defined as l i f the àrea element 
da{Q) contains a vèrtex of T and the segment PQ does not intersect any line of T, 
and 0 otherwise. According to (4.15) and since the probability that a segment 



Averages for polygons formed by random Unes In Euclidean and hyperboHc planes 153 

PQ of length p does not contain any point ¡n a Poisson process with pararaeter A 
is equal to e"*', we have 

(6.8) E^(N) = i f ' f" nX^e-^i'da = ifc-*7i»A» f " «"'"sín fc*p</p 
Jo Jo Jo 

or 

(6.9) £^(N) = 00 for A g I fc 1*. £̂ (A0 = jí^Tfc) f̂ ' -̂  > I * I*-

Method (b). Wc now select at random a vèrtex Q of the system of random 
polygons T. By (2.14) íf 9 denotes the interior angle of the polygon corresponding 
to the vèrtex Q, we have 

(6.10) X = ik- ̂  I* (1 - cos k*p)d<i> 

and thus, by (6.1) and (2.4) we have 

E^A) = ik-i I* i rr r A¿"*''(l-cosfcV)dpA#l sin0d0 

(6.11) = (2ik)-» r Xe~^''(l-cosk*p)dp f OsinOde 

- i £..(>1) 
and thus 

(6.12) Ef^A) - 00 for A á I * I*. E„(A) = ^J_^ ^^ for X>\k |*. 

To compute E^L) we observe that the sides opposite to the chosen vèrtex Q, by 
similar considerations as above, give the term i£^(L) and the sides which are 
adjacent to Q give the mean length 1 /A. Thus we have, E^L) - oo for A á | fe |* 
and 

(6.13) E^L) - i£^(L) + 2/A - ^ " 4 ^ ^ \ ^ ^̂  for A > | fc |*. 

Similarly, we get E^N) = 00 for A ^ |fe|* and 

(6.14) £^N) = i£^(A0 + 3 - í í l l ^ ^ l ± ^ forA>|fe|*. 

where the term £ (̂N) stands for the vértices which are opposite to Q and the term 
3 stands for the two vértices adjacent to Q and for Q itself. 

Method (c). By similar considerations as above we get the remaining mean 
vàlues: 
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(6.15) £,,(.4) = ÍE^ÍA) = j j ^ . X>\k\* 

(6.16) E,(L) = ÍEAL) + 2 M = ^"'2¡iP + l¿r ' '̂  "* ' ^ '* 

(6.17) £,(N) = i£,(iV) + 2 = ^ " ^ ; ^ ? ^ / ^ A> |fc|*. 

For A ^ I fc 1̂  these mean vàlues are all oo. 
Notice that jn the case of the hyperbolic plane, fc = — 1, in orderto obtain a 

fínite value of the means E^, £jv, £¿ we must have A > 1. 

Alternative proof. We are indebted to the referee for the remark that all the 
preceding mean vàlues can be deduced from E/^A) úsing a very íngenious device 
due to Miles [5]. Indeed, select a random vèrtex of T, say Q, and denote by 
Pit-'-fP*, in order about Q, the four polygons having Q as common vèrtex. 
Then P1234 => Pi u P2 ̂  ^3 ̂  ^4 is B random polygon selected by method (a); 
P12 = Pj U P2, P34 = P3 U P4 are random polygons selected by method (c) and 
Pi, P2, P3, P4 are random polygons selected by method (b). Using these remarks 
one can deduce some relations between the means E^, Ef,, EL which determine 
all of them from E^{Á). Though this method is more elegant and shorter, the 
proofs given above are perhaps more natural and straightforward. 

7. The second moments 

Let dF^(A,N,L) denote the probability that the polygon chosen according to 
method (a) has àrea between A and A + dA, perímeter between L and L + dL and 
has N vértices. Similarly, let dF,^(A,N,L) and dFL{A,N,L) denote the analogous 
probabilities for the polygons chosen with methods (b) and (c). We have made 
the assumption that all such probabilities exist. 

Let dF{A,N,L) denote the probability that a random polygon of T has àrea 
between A and A + dA, perímeter between L and L + dL and has N vértices. 
Here the method of sampling a random polygon has the following sense: we 
consider first the finite number of polygons which intersect a convex (or A-convex) 
domain K^^t), all equally likely; for this finite set the probability dF,(A,N,L) 
has a well-defíned meaning and then dF(A,N,L) is the limit value of this proba­
bility as (-» 00, so that Ko(t) expands to the whole plane H(k). Our assumption 
is that this limit exists almost surely. 

Sínce the probability that a randomly chosen point on the plane belongs to a 
polygon of àrea A is proportional to A (i.e., the probability of choodng a polygon 
of àrea A by method (a) is proportional to A), we have the equation 

(7.1) dFM,N.L)~^^^^¡^, 
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and similarly 

(7.2, , f ^ . , N , L ) . Í Í Ü ^ ! ^ , .F , ( . ,N .L , = i ¿ ^ ^ . 

Multiplying (7.1) and (7.2) hy A, L, N and integrating over all vàlues of A, 
N, L we get 

(7.3) £(A») = E{A) E/^A), E(LA) = £(A) £^(L), E{NA) = E(A) £^(N). 

(7.4) E(AN) = £(N) E^iA), E{LN) = £(N) E^L). EiN') = £(N) £j»(JV). 

(7.5) EiAL) = £(L) £i.(/l), £(L^) = £(L) E¡iL),E(NL) = £(L) £i.(N). 

From these relations we deduce 

E(A) £^(L) = £(L) £i(^). 

(7.6) £(iV) E^A) = £(^) £x(N). 

£(L) E¿N) = £(N) £;v(I'). 

which yield the identíty 

(7.7) EAL) E^A) E^N) - EJiA) EJ^N) E^L) 

which can be directly veríñed from the results of Sectlon 6. 
The identíty (7.7) shows that the Equatíons (7.6) are not independent and 

thus they are not sufflcient for computing the mean vàlues E(A), E(N), E(L). It 
seems very plausible that a new relation must be given by the Gauss-Bonnet 
formula (2.18). Indeed calling A,, Nf the àrea and the number of vértices of the 
polygons having at least one point in common with K^^t) (i » 1,2, ••·,P(r)), using 
(2.18) we have 

(7.8) - f c ^ , - ( ^ , - 2 ) « - Z 0tt. ( i - l ,2 , - . . ,P(0) 

where 0^ (A = 1,2,---,N,) are the interior angles of the <th polygon. Since the 
total angle at a point is 2R we may aocept that, almost surely, 

(7 9) £ du, is equivalent to ^n £ N, as (-»oo. 
^ í.» í 

This assumption supposes that "edge effects" are negligible, a fact that is 
surely true for the Euclídean plane, but which should be ínteresting to prové for 
the hyperbolic plane. Accepting (7.9), then (7.8) gives 

(7.10) «£(A0 + 2ik£(A)-47r. 

This equation, together with the system (7.6) and the vàlues of Section 6 give 
the result 
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(7.11) E{A)= , , / " . , . E(L) = , , ! " ' Í . . . . £(A0 = 4 + ^""l 

(TC^P -

(jt»A» -

(n^X^ -

2ŝ [(«^ 
(ji'A» -

it^Xlin 
(jtU^ -

7t2A»[(j 

-2|fc|)(A^ + fc)' 

4jt'A 

-2|k|)(A» + fc)' 

2ff^A» 

-2|*|)(A» + *) ' 

» + 4)A* + 4fc] 
-2\k\KX' + ky 

» + 8)A* + 8Jk] 
-2|fc|)(A» + fc)' 

i* + 24)A^ + 24Jk] 

7t*A»-2|k|* ' ' 7t*A*-2|k|* ' ' jt»A»-2|fc| 

for A > (21 fc |)*/rt, and £(^), £(N), £(L) = oo for A ^ (2| k \)*/n. Sínce üc ^ 0 in 
the expressions above we can put l'c | = — k. 

Taking (7.11) into account, the Equations (7.3), (7.4) and (7.5) give the foUowing 
second order moments. For A > 1, 

(7.12) E(A^) ^"* 

(7.13) E(AL) = 

(7.14) E(AN) = 

(7.15) £(L*) = 

(7.16) £(NL) = 

(7.17) EiN') , , , 
^ ^ 2(jr'A»-2|ik|)(A» + fc) 
and for A ^ 1 the síx second order moments become oo. 

Notes. 1. For the Euclidean plane k = 0, the vàlues (7.11) coincide wíth the 
vàlues (5.4), (5.6) and (5.8), that is, we have £* = £. These vàlues agree with those 
given by Miles [4]. Also the second order moments (7.12),•••,(7.17), for Jlc = 0 
agree with those given by Miles [4]. 

2. For the Euclidean plane the fírst and second order moments of A, N, L are 
finite for any A > 0. For the hyperbolic plane the ñrst order moments are finite if 
and only if A > 2^/n «• 0.450, and the second order moments are finite if and 
only if A > 1. We do not know if these critical vàlues of A increase with higher 
order moments. 

The authors are indebted to the referee for many valuable suggestions and 
improvements. 
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