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520 PROBLEMS AND SOLUTIONS [November,

@* = DI + D2+ - - +ph 1] = 2%

This is impossible because the bracket is also odd and greater than 1. Hence
r=2m,
However, when r =2m, the given equation can be written as

P = DT+ 1) = 29,

and it is easily proved that this is possible only when m =0 or 1, and that for
the latter situation p=3.
It is also seen that the hypothesis that p is a prime is superfluous.

I1. Solution by D. W. Alling, Rochester, New York. We have pr=1(mod 27),
and it is clear that p belongs to the exponent » mod 2*. But ¢(2#) =271 and
r| 21, Hence r is a power of 2. If r>1, then 7 is even and the integral factoriza-

tion
(@ = D+ 1) = 20
is possible. Therefore

pia—1=120, piA41=2, 20-2=_2

Solving we find, uniquely, b=2,a=1,n=1.

Also solved by D. W. Alling (another solution), Murray Barbour, D. H.
Browne, R. C. Buck, A. Charnes, Roy Dubisch, Paul Erdés, N. J. Fine, J. B.
Kelly, E. D. Schell, Peter Scherk (two ways), E. P. Starke, and the proposer
(two ways).

The solutions of Murray Barbour, Roy Dubisch, N. J. Fine, J. B. Kelly,
E. D. Schell, and one of the solutions of the proposer are essentially like solu-
tion I above. The alternate solution of D. W. Alling and the solution of D. H.
Browne utilize the fact that all primes are of the form 4k+1. The proposer
offered a second solution using the theory of Galois groups. R. C. Buck estab-
lished the more general theorem: If ¢g*-+1=ar, q prime, then r=1 except for the
special case 2241 =232 If, further, a is prime, then the only solutions are the Fermat
primes, p =27"+1. Peter Scherk and Paul Erdés solved essentially Buck’s ex-
tension. Most solvers noted the uniqueness of solution when 7#>1, and several
observed that p need not be restricted to a prime.

An Integral Related to the Gamma Function
E 664 [1945, 159]. Proposed by D. H. Browne, Buffalo, N. V.
Prove thatif x <1,

0 gn © r—1
> — tre=tdt =
n=0 M 1 - X

I. Solution by N. J. Fine, Purdue University. The problem should be stated
with the condition |x| <1. Set B,=1/n!f t"e-'dt. By=¢~! and an integration by
by parts shows that B,=e¢"!/n!l4B,_1, 50 B,=e"') _s.o(1/k!). Hence, if |x| <1,
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—rs =0 k=0 Kl k=0 k! vk o kl1—2x 11—«

I1. Solution by Harley Flanders, Universit}; of Chicago. The problem should
be stated with the condition |x| <1. Set ¢, = J, t"¢~'dt. Then we have

© ) 1 1
n! =f tre~tdt > ¢, =f tre~tdt —f tre=tdt > nl — f etdt=nl—1+¢L,
0 0 0 0

Therefore

L) 0 0
Sar > (exn)/nl > D [1 — (1 — e V) /nl]axm
n=0 Rl =0

By the “ratio test” we see that both extreme series, and hence the given series,
converge in the interval |x| < 1. Hence the given series converges uniformly in
that interval by a known theorem on power series and we may interchange the
operations:

© " © L) 0 xb)n L ez—l
D Z [ trear =f [ 2 i ]e*‘dt =f e‘“‘1>'dt=1 )
1 1

n= nlJ 1 w0 N -z

(since x—1<0).
Also solved by D. W. Alling, Murray Barbour, Ellen Buck, Sidney Glusman,
J. E. Hanson, J. B. Kelly, E. E. Osborne, E. P. Starke, C. W. Topp, and J. T.

Webster.
J. B. Kelly obtained his solution from results of E 654. E. P. Starke showed,

as an incidental note to his solution, that
eco/n! < e < (ecn + 1)/nl,
ecy = 2, eni1 = 14+ (n + 1)ec,.

Since the integers ec, are easy to compute we then have here a novel way of com-
puting the numerical value of e.

Circles Covering a Given Curve
E 665 [1945, 159]. Proposed by L. A. Santalo, Rosario, Argentina

Let C be a closed convex plane curve with continuous radius of curvature R.
Let R be the greatest value of R. Given A = Ry, show that the area F) covered
by the centers of circles of radius X which contain C in their interior is given by

F\=F — L\ 4 7\,

where L and F are the length and area of C.

Solution by R. A. Rosenbaum, U.S.N.R. Problem E 630 [1945, 160] can be
easily generalized so as to include the present problem. The generalization of
E 630 is:
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