

4070
Author(s): P. Erdos, L. A. Santalo, Alfred Brauer, I. S. Cohen
Source: The American Mathematical Monthly, Vol. 51, No. 4 (Apr., 1944), pp. 234-236
Published by: Mathematical Association of America
Stable URL: http://www.jstor.org/stable/2305800
Accessed: 29/09/2008 03:43

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=maa.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org.

Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access to The American Mathematical Monthly.
hypocycloid. Prove that this hypocycloid is the locus of a point on a circle, radius $R / 2 \sin \theta$, which rolls inside another circle, radius three times that of the rolling circle, whose center X is equidistant from the circumcenter C and the orthocenter O, and is such that angle $O X C=2 \theta, R$ being the circumradius.

4116. Proposed by N. A. Court, University of Oklahoma

Given the tetrahedron $\left(T_{1}\right)=S A_{1} B_{1} C_{1}$, the tangent plane to its circumsphere at the diametric opposite of S meets the edges $S A_{1}, S B_{1}, S C_{1}$ in the points A_{2}, B_{2}, C_{2}. The tangent plane to the circumsphere of the tetrahedron (T_{2}) $=S A_{2} B_{2} C_{2}$ at the diametric opposite of S meets the edges of (T_{2}) through S in the points A_{3}, B_{3}, C_{3} thus forming the tetrahedron $\left(T_{3}\right)=S A_{3} B_{3} C_{3}$, etc. Find the locus of the incenters of these tetrahedrons.

4117. Proposed by J. Rosenbaum, Bloomfield, Conn.

A polygon $A_{1} A_{2} \cdots A_{n}$ may be transformed into a polygon $B_{1} B_{2} \cdots B_{n}$ by locating the points B_{i} on the sides $A_{i} A_{i+1}$ so that the ratio of $A_{i} B_{i}$ to $B_{i} A_{i+1}$ is equal to a constant r. Prove that if T_{1} and T_{2} are two such transformations for the ratios r_{1} and r_{2}, then $T_{1} \circ T_{2}=T_{2} \circ T_{1}$, and generalize.

4118. Proposed by Otto Dunkel, Washington University

Show that

$$
\sum_{t=0}^{n}(-1)^{n+t} \frac{t^{n+4}}{t!(n-t)!}=\frac{(n+4)(n+3) \cdots n}{6!8}\left[15 n^{3}+30 n^{2}+15 n-2\right], n \geqq 0
$$

and that each member of this equality is a non-negative integer. If n is a negative integer, the right member is an integer; what meaning may be given to the result in this case?

4119. Proposed by V. Thébault, San Sebastian, Spain

The straight lines joining the vertices of a triangle to the points of contact of the inscribed circle with the respective opposite sides meet in a point P. Show that the six points of contact of circles tangent to two sides and orthogonal to a given circle with center P are on a circle concentric with the inscribed circle.

SOLUTIONS

An Inequality for Triangles

4070 [1943, 124]. Proposed by P. Erdös, Princeton, N. J.
Let ρ denote the length of the radius of the inscribed circle of the triangle $A B C$, let r denote the circumradius and let m denote the length of the longest altitude. Show that $\rho+r \leqq m$.

Correction. The proposer intended to exclude obtuse angled triangles.
I. Solution by L. A. Santalo, Rosario, Argentina. Let $A_{1} A_{2} A_{3}$ be a triangle with no obtuse angle and with angles $A_{1} \geqq A_{2} \geqq A_{3}$; let O, I, H_{i}, B_{i} be the circumcenter, incenter, foot of the altitude from A_{i}, point of contact of incircle (I)
with side $a_{i}=A_{j} A_{k}$. If $I \equiv O$ the triangle is equilateral and $\rho+r=m$. If $A_{1}=\pi / 2$ and $A_{1} A_{2}=A_{1} A_{3}$, then $\rho+r=m$.

Since $A_{2} B_{1} \leqq B_{1} A_{3}$ and angle $O A_{3} B_{1} \leqq$ angle $I A_{3} B_{1}$, the center O does not lie outside the triangle $B_{1} A_{3} I$. Also $A_{3} O$ and $A_{3} H_{3}$ are symmetric with respect to $A_{3} I$. Let O_{3} on $A_{3} H_{3}$ be the symmetric of O with respect to $A_{3} I$ so that $A_{3} O_{3}=r$, and let I_{3} be the orthogonal projection of I on $A_{3} H_{3}$ so that $I_{3} H_{3}=\rho$. Since angle $O_{3} I B_{3}>\pi / 2$, the point O_{3} lies on segment $A_{3} I_{3}$, and it follows that $\rho+r \leqq A_{3} H_{3}$ $=m$.

If $A_{1} A_{2} A_{3}$ has an obtuse angle it is not easy to determine the relation between m and $\rho+r$. If $A_{1} A_{2}=A_{1} A_{3}$ and angle $A_{1} \rightarrow \pi$, then $m \rightarrow 0$; hence there are triangles for which $\rho+r>m$. On the contrary, if $A_{1}>\pi / 2, A_{1} A_{2}<A_{1} A_{3}$ with $A_{1} A_{3}$ fixed, and we let $A_{1} \rightarrow \pi / 2$ and $A_{1} A_{2} \rightarrow 0$; then we see that there are obtuse angled triangles for which $\rho+r<m$.
II. Solution by Alfred Brauer and I. S. Cohen, University of North Carolina. It is easy to see that this theorem is not always true. For example, let the triangle be isosceles and let its vertex angle approach 180°. Then $\rho \rightarrow 0, r \rightarrow \infty$, $m \rightarrow 0$, so that $\rho+r \leqq m$ cannot hold. The proposer subsequently indicated that the triangle should have been acute.

In the following, we prove, in fact, considerably more: Let the angles A, B, C of the triangle be such that

$$
\begin{equation*}
A \leqq B \leqq C \tag{1}
\end{equation*}
$$

Then the above theorem is true if $B \geqq 45^{\circ}$; on the other hand it is definitely false if $B<2 \operatorname{arc} \sin \frac{1}{2}(\sqrt{3}-1)=42^{\circ} 56^{\prime}+$. If $42^{\circ} 56^{\prime}+<B<45^{\circ}$, then the theorem may be true or false, and it is definitely false if also $C \geqq 135^{\circ}$. For an acute triangle, the theorem then follows from the fact that then $B \geqq 45^{\circ}$.

Since A is the smallest angle, the longest altitude will be the one drawn from the vertex A. It can be shown that

$$
\frac{m-\rho-r}{r}=\cos (C-B)-\cos C-\cos B=f(B, C)
$$

It follows from (1) that

$$
B \leqq C, \quad B+C<180^{\circ}, \quad 2 B+C \geqq 180^{\circ} .
$$

These inequalities define in the (C, B)-plane a certain triangular domain, and we are interested in the values of $f(B, C)$ in this domain.

For a fixed $B\left(0<B<90^{\circ}\right)$, let $f(B, C)$ be considered as a function of C in $B \leqq C \leqq 180^{\circ}$. Then

$$
\frac{\partial f}{\partial C}=-\sin (C-B)+\sin C
$$

vanishes if and only if

$$
C=90^{\circ}+\frac{1}{2} B
$$

and it is easily verified that this gives a maximum of f; moreover this is the only maximum in $B \leqq C \leqq 180^{\circ}$ (for fixed B).

We now distinguish the cases $B \geqq 60^{\circ}$ and $B<60^{\circ}$. If $B \geqq 60^{\circ}$, then for the significant values of C we have

$$
B \leqq C \leqq 180^{\circ}-B \leqq 90^{\circ}+\frac{1}{2} B .
$$

Therefore, for fixed $B, f(B, C)$ is increasing in the significant interval, and so $f(B, C) \geqq f(B, B)=1-2 \cos B \geqq 0$. Thus the theorem is proved when $B \geqq 60^{\circ}$.

If, now, $45^{\circ} \leqq B<60^{\circ}$, then the significant values of C are defined by $180^{\circ}-2 B \leqq C<180^{\circ}-B$. Then the maximum $C=90^{\circ}+\frac{1}{2} B$ lies in this interior of the interval, and we must consider the function at both endpoints. Now at the left endpoint, $f\left(B, 180^{\circ}-2 B\right)=\cos 2 B(1-2 \cos B) \geqq 0$. At the right endpoint, $f\left(B, 180^{\circ}-B\right)=-\cos 2 B \geqq 0$. The theorem is now proved for all triangles for which $B \geqq 45^{\circ}$.

To see when the theorem will not be true, we note that it will certainly be false for those values of B for which $f(B, C)$ is negative at the maximum $C=90^{\circ}+\frac{1}{2} B$. At this maximum we have $f\left(B, 90^{\circ}+\frac{1}{2} B\right)=2 \sin ^{2} \frac{1}{2} B+2 \sin \frac{1}{2} B-1$. Since the roots of the quadratic $2 x^{2}+2 x-1$ are $-\frac{1}{2} \pm \frac{1}{2} \sqrt{3}$, we have $f\left(B, 90^{\circ}+\frac{1}{2} B\right)$ <0, if $-\frac{1}{2}-\frac{1}{2} \sqrt{3}<\sin \frac{1}{2} B<-\frac{1}{2}+\frac{1}{2} \sqrt{3}$, that is, if

$$
B<2 \arcsin \frac{1}{2}(\sqrt{3}-1)=42^{\circ} 56^{\prime}+
$$

Thus the theorem is certainly false if B is less than this angle.
If $42^{\circ} 56^{\prime}+\leqq B<45^{\circ}$, the theorem may be true or false, depending on the value of C. We show that if $C \geqq 135^{\circ}$, then it is false. Namely,

$$
f(B, C)=\cos (C-B)-2 \cos \frac{1}{2}(C+B) \cos \frac{1}{2}(C-B)
$$

Since $C \geqq 135^{\circ}, B$ is $<45^{\circ}$, it follows that $C-B>90^{\circ}$, and $\cos (C-B)<0$. Since $\frac{1}{2}(C+B)$ and $\frac{1}{2}(C-B)$ are between 0° and 90°, the second term is also negative.

Solved also by H. Eves and I. Kaplansky.
Editorial Note. The solution by Kaplansky used the function $f(B, C)$ above with somewhat similar results. Eves showed that the theorem is not true for all obtuse triangles; and, for right and acute angled triangles, he gave a synthetic proof based on the equality $x_{1}+x_{2}+x_{3}=\rho+r$ given in Johnson's Modern Geometry, art. 298, f. where the x_{i} 's are absolute normal coordinates of the circumcenter of any triangle $A_{1} A_{2} A_{3}$. Using this equality and the relation $h_{i} a_{i}=a_{1} x_{1}$ $+a_{2} x_{2}+a_{3} x_{3}$, where a_{i} and h_{i} are lengths of sides and corresponding altitudes, we easily obtain a proof different from that of Eves. If $a_{1} \leqq a_{2} \leqq a_{3}$, we have at once $h_{3} \leqq \rho+r \leqq h_{1}$. Returning to the function $f(B, C)$ there are two angles C_{1}, C_{2} for which $f\left(44^{\circ}, C\right)=0$ which are approximately $95^{\circ} 45.8^{\prime}, 128^{\circ} 14.2^{\prime}$, and $f\left(44^{\circ}, C\right)$ is positive or negative according as C lies within or outside the interval from C_{1} to C_{2}.

