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Summary. - We generalize the kinematic formula of Chern-Federer (1.2) lo the case in which
the moving manifold M* is a cylinder in E». These oylinders and the corresponding kinematic
density are suitable defined and some particular cases are considered in detail.

1. — Introduction.

This paper will be concerned with the so called « kinematic formula » in Inte-
gral Geometry, due to FEDERER [2] and CHERN [1]. We shall refer mainly to the
work of Chern, which likely assumes some more restrictive conditions than Federer,
but remains into the mark of differential geometry. The approach of Federer is
more in the mark of measure theory. The formula to which we refer is the follow-
ing (CHERN [1]).

Let M», M¢ be a pair of orientable, compact, differentiable manifolds (without
boundary) of dimensions p, ¢ immersed in euclidean space E*. Let dg denote the
kinematic density (= Haar measure of the group of motions in E*) so normalized
that the measure of all positions about a point is 0,_, O,_; ... O; where

it
1.1 f= e
D 0 I((i+1)/2)

is the volume of the i-dimensional unit sphere. Assume M7 fixed and M¢ moving
with the kinematic density dg. Let u.(X*) (0<e<k) be the integral invariants (we
call them Weyl's curvatures) of the riemannian k-dimensional manifold X* to be
defined below. Then the kinematic formula of Chern-Federer writes

(1.2) [niar O gModg= 3 o Mo)p_ (MY, i even
o

(L]

where ¢ even and 0<e<p-+ ¢—n. The integral on the left is over the whole

(*) Entrata in Redaziono il 22 maggio 1973.
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group of euclidean motions in E*, i.e. over all positions of M, and ¢,= ¢,(n, p, g, ¢)
a.reznumerical constants depending on n, p, q, ¢ which may be calculated as fol-
lows. Put

0,. cee Ol 0,+'_n+|oq+l—lov+l—o+l

= 0,0,110000:10510-n 31105 re_nra—ors

(1.3) Co:

b-.v+c-n+l-l’

where the b’s are given by the following identity (with respect to the indeterminate )
with m=p+ ¢q—n+2,

20.._10.,._’ -— (0/2)! ,‘0214-0-—0 2d4e
) T L e — =i Oy S

= b..,,._,_l.’t"""l + ... + bo,m—lwm—l

where the sum on the left side is over the following range of indices
0<2A+u<e/2, 0<Au.
For instance, for ¢{= 0, (1.3) gives

0,. ves 01 ov+l—a b

O’+1030.0,+‘_”+._. 0.P4+E¢~-n41

(1.5) 0, =

and identifying the coefficients of z™-! of both sides of (1.4) we have (since the rela-
tions 0<244 u<ef2, 24+ 2u=e give A= 0, u= ¢/2)

b _ Om—lom—lou—a

om=t Om—c-l )
Hence

b . OP+'—H+IOD+|—HOD+¢—H+I—O
0, P+a—-Nn¢l O

+¢—-n41l—s

and thus
(1.6) 0, = On sre Ol 09+l—l OD+¢—"+IOD+|—" ]

OP+IO'00 Ov+¢—~+l-l

A

In particular we have

0,..0,0,,,..
(1.7) 6(n, Py q, 0) = _O—,lo—fﬂ_ .
In like manner, if we put i = ¢ in (1.3), making use of (1.4), we easily get

0.. cee 01 0¢+,_.o.+q—a+10v+c—n
1.8 = .
( ) oﬂ(n’ »nay 0) 0,0'0".10,.“_»—“-0
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Our purpose is to extend (1.2) to the case in which M? is a cylinder Z,,, in E*.
In this case, the kinematic density must be replaced by the density dZ, ., for cylin-
ders, which we will define in section 3. The result is the formula (5.2) which contains
as special or limiting cases many formulas in integral geometry in E*. We consider
with detail some of these particular formulas in section 6.

2. — The Weyl’s curvatures.

We will define the curvatures u,(X*) which appear in the kinematic formula (1.2)
(see WEYL [6], CHERN [1], FEDERER [2]).

Let X* be a differentiable riemannian manifold of dimension k¥ and consider the
classical differential forms w,, w,, (1<, B, 7, d < k) of the « moving frames » method,
such that

(2.1) w,,-{- w"= 0 d(l), = z w‘/\wﬁ, d(l).’= z w,,/\ww-{- 'Qap
I ] 14

where

(2.2) 'Qap= b yzasaﬁydwy/\wd

The coefficients §,,,, are essentially (though not exactly) the components of the
Riemann-Christoffel tensor and have the same well known symmetry properties

Baps=— Supsy = — Spays

(2.3)
Sapys= 18 yoap 1 Sah" + Sayap+ Suspy= 0
Put
_1).“(,‘—6)! 18y &
(2'4) I' = LW— z O;I’nuﬁo. S’l“Jl’l oe S‘o—l“cﬁa—lﬁn

where ¢ is an even integer satisfying 0<e<k and &3¢ is equal to +1 or —1 ac-
cording as «,, ..., «, i8 an even or odd permutation of f,,..., §, and is otherwise
zero, and the summation is taken over all a,,...,a, and B, ..., f, independently
from 1 to k. When X* is oriented and compact, we let

(2.5) X = [ 1,da,
b o

where do, is the volume element. This formula (2.5) defines the Weyl’s curvatures
(e even, 0<6< k). In particular we have

(2.6) Ho(X*) = total volume of X*
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and, if k is even,
(2.7 ur(X*) =} Oy 2(X*)

where y(X*) denotes the Euler-Poincaré characteristic of X*. (2.7) is the Gauss-
Bonnet formula for compact even dimensional manifolds.

It would be of interest to compare these curvatures u,(X*) with other curvatures
which appear in the literature. For instance, if X* is the boundary of a bounded
convex set of E*+! the volume V(g) of the parallel set to X* at distance g is (HaD-
WIGER [3])

A+1
28) vo= 2 (‘T we

{=0

and the volume of the ¢ tube » at distance g is
k+1 .
(2.9) Vie)—V(—o) =2 2 ( + ) W.ot, ¢t odd.

The invariants W,(X*) (quermassintegrale, introduced by Minkowski) may be
written

1
(2.19) W, = i M,
where M, (1=0,1,2,..., k) are the i-th integrated mean curvatures
2.11) M= v i
(2. k41 R., '
i J"
where do, is the volume element of X* and {1/R,, ..., 1/R,} is the i-th elementary

symmetric function of the principal curvatures of X* Comparing (2.9) with the
Weyl’s formula for the volume of tubes [6], we get

(2.12) uo=M,, o even.

This formula holds for smooth compact hypersurfaces X* of E**1, not necessarily
convex. We deduce that, for e even, the mean curvatures (2.11) are isometric inva-
riants of X* which do not depend of its immersion in E**!, i.e. are intrinsic invariants.

3. — Density for cylinders.

Let M? be an orientable, compact, differentiable manifold (without boundary)
which belongs to a (n — m)-dimensional linear space E* in E*. Thus

(3.1) h+m<n,
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Through each point x € M* we consider the m-dimensional linear space E™ per-
pendicular to E~m. The set of all these E~ is called a cylinder Z,, of dimension
h 4+ m, whose generators (or generating m-spaces) are the m-spaces E~ and which
orthogonal cross section is the manifold M».

If we agsume Z, ,, moving in E», its position may determined by a E*-"(0) through
a fixed point 0, orthogonal to the geneators E™, and the position of the cross section M*
in E~n(0). The density dE~™(0) (= volume element of the grassmann manifold
G._mm of all (n — m)-planes through 0 in E*) and dg._. (kinematic density in E»-m)
are well known (see, for instance SANTALO [4], [5], CHERN [1]}, HADWIGER [3]). The
density dZ, . for cylinders Z,,, is then

3.2) dZy = dE~"(0)\dgn_m .

We recall these densities for completeness. 1f (z; e,, 6,, ..., 6,) i8 an orthogormal
frame in E* and we put

(3.3) wi=(dz-e,), = de, e,
then
(3.4) dg. = Aw, dwy

where the exterior products are between the ranges

(3.5) i=1,2,..,0; j=2,3,.,n; k=12 ..,0n—1
with

The differential form

(3.6) do,= o, AW A\...Aw,
is the volume element in E» If E~ is spanned bY 6€u,;y 6m,s ..y 6o We have

(3.7 dgn_mz (0m+l/\'-'/\wnAwn
where

j=m+2,..,m; k=m4+1,.,n—-1, k<j

and if E» is spanned by e,,e,, ..., 6, We have
(3.8) ag,.= O A e AOm Aw s
where

1i=23.,m; k=1,2,...,m—1, k<j.
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Finally, assuming E*(0) parallel to E*™, we have

(3.9) AE*(0) = Aw,,
where

j=m+1,.,n, k=12,.,m,
From (3.4), (3.2), (3.7) and (3.8) we deduce
(3.10) dg = dg,= AE*™(0)Adgn-uAAGn= AZ\ A\ dg., .

The exterior products in (3.8) and (3.7) have a clear geometrical meaning. Indeed
we have

(3.11) Ao Awm = do, = volume element in E™,
(3.12) WOmia A A= do,_n= volume element in E~m.

(3.13) Aop(j=2y..c,m; k=1,...,m—1; k<j)=d0,_AdO,_,A...AdO,

where dO, denotes the area element on the unit i-dimensional sphere in the space
spanned by e, e6,, ..., 6,,,, and

(3.14) Aop(j=m+2,....0; k=m+41,...,n—1; k<) =d0,_n_A...AdO,
where dO, is now the area element on the unit sphere in the ({4 1)-space spanned
by 0,,,+” eeey am+i+l'

The density dE™ for the generating m-spaces E™ writes

(3.15) dE™= dE~"(0)\don_m

where do,_,, i8 the element of volume in E*—(0) at the intersection point E™ N E*-n(0).
Having into account (3.2) and (3.7) we have

(3.16) dZym= AE"N\AOy_m_, 1 A\...N\dO, .

We always consider the densities in absolute value, 8o that the order of the exterior
products above is immaterial.
4. — The Weyl’s curvatures for cylinders.

Choose the frame (z;e,, ¢y, ..., ¢,) such that z€ Z,, and ¢,,¢,,...,¢,,, spann
the tangent space to Z,, in such a way that e, ¢,, ..., ¢, 8pann the generator E,
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through z and é,.,,, ..., 6.,s Spann the tangent space to the cross section M*. The
volume elements in E=, M* and Z,, are, respectively

(4.1) Ao = A N Wy doy= O g Ao AWDmyny Ao = A A O a

and we have

(42) ddm+h= don/\do, .

Since all E~ are perpendicular to E~—=, we have ¢, = constant for «=1,2,..., m
and thus w,, = de,-6,=0 (a=1,...,m; k= 1,2,...,m + h). Therefore dw,,= > w, A
Aw,+ 2,,=0 and consequently 2, = 0. Therefore, applying (2.2) to the cylinder
Z,n we have 8,,, =0 («a=1,2,...,m; k, i, j=1,2,..., m+ h). According to the
symmetry properties (2.3) of 8,,,, the equation 8,,,,= 0 implies that 8,,,= 8,,,=
= 8,,o=0. The remaining 8, with 1,j,k,s=m+ 1,m+ 2,...,m+ h are the
functions 8,,, corresponding to the cross section M.

Therefore, the sums on the right side of (2.4) are the same for Z,, and for M*
and an easy calculation gives

()
Ic(zh.m) = ’

(4.3) (H; m)

Ic(Zh,m)zo if e>h.

I(MY it e<h,

5. — The kinematic formula for cylinders.

Let E™ be a generator of Z, , and consider a bounded domain D= c E™. Assume
that D™= D=(t) depends on a parameter ¢ in such a way that D™ — E~ when ¢ — oo,
Consider the compact manifold D= x M*. It do,, do,, do,,. denote respectively the
volume elements in D=(t), M* and Z,, we have do,,.= do./Ado, and from (2.5)

and (4.3) we get
(
e

tzm = 3
(6.1) HelZn.n) (b+m)

[

b M*)om if e<h,

”o(zl,u) =0 ite>h.

where o, denotes the volume of D=,
We now apply formula (1.2) to M® and M¢= D~ x M*. Using (3.10) having
into account that dg, = donAdO0,_A...\d0, and making ¢t — oo (after division of
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both sides by o,), 80 that D™ E™ we get the desired formula

e (1)

(6.2) f U M*NZ,,)A2), = ._AZK. 0.0,.. 0., (h—{- m) ui(M*)u,_ (M)

‘A,nﬁ""“ e — i

(e even, 0<e<p+h-+m—n, i>0, i even)

where ¢, = ¢,(n, p, h 4- m, ¢) are the same constants as in Chern's formula (1.2).

6. — Particular cases.

1) Assume that Z,, reduces to a m-plane E™ (h=0). Then, according to
(3.16) we have dZ, ,= dE"A\dO,_,_,A\...AdO, and p(M°)=1. The sum on the
right side of (5.2) reduces to the term ¢ = e and according to (1.6) we get (¢ even,

e<p+ m—n)

Onm. 000,10, m 00y imnin
070D+10n+m—n+|_.01 “ee 0,,.

(6.1) j u{MeNE™)dE™ = B M) .

E"NM®wé

This formula is due to CHERN [1]. For p=n—1, see [4], [5].

2) Consider the case e = p + m — n. According to (2.7) we have
/l,+.._.,.(M’f\ Er) = &0'+m-n X(M’n E~)
and (6.1) gives (p + m —n even)

20n—n (X2 ou 0n—ﬂ+10’+m—n+l
0,0,0,,,0,...0,

(6.2) J‘ 2 M*NE™AE™ = Hermn(M?) .

E"NMP4
3) The case ¢ = 0. Applying (1.7), from (5.2) we deduce

0....00.0, s mn
O’OH-M

(6.3) f pol M2 O\ Zy,0) A2y, = pol M) el M)

l».-ﬁll' !"‘

If p+ A+ m — n =0, then y, is equal to the number » of intersection points of M?
and Z,,, and (6.3) gives

(6.4) f v M*N 2,42, . = 23“——(‘%03 to( M?) o M*)
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and (6.1) gives

’ o 37m 20n—m ooe On .
(6.5) jv(M N E™AE —m Ho(M?) .

The integrals in (6.4) and (6.5) are extended over all positions of Z,,, and Em,
v being zero if they do not intersect the manifold M>.
4) As last example, consider the case
P+hd+m—n=2, e=2,
We have, by (2.7)
wa(M*N Z,,) =340, (M*N Z, ,,)

From (1.3), (1.4), having into account that ¢=h+ m, p+ ¢—n= 2, we have

0,...0,0,_,0,0,

(6.6) G(n,p,h+4+m,2) =
|( ’p’ + ’ ) 0,0,+]0A+ﬂ01

Using (6.6), (1.8) and the identity 0,0,_,= (i — 1) O,, formula (5.2) gives

» = %93_'_' LQL".Q.' .
(6'7) X(M N Zl,m)dzh,u - 0,0._,_,,.01
MPNEp mrd
h(h—1) 0,.,
’ [2ﬂ(h + m— 1) ’lo(Mp)‘Mi(M“) + Oﬁ+l /‘I(M’) ”O(Mh)] .
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