ON PARALLEL HYPERSURFACES IN THE ELLIPTIC
AND HYPERBOLIC #-DIMENSIONAL SPACE

L. A. SANTALO

1. Introduction. Let S*! be a hypersurface of class C? in the elliptic
or hyperbolic #-dimensional space, which is closed and bounding and
whose principal curvatures with respect to an inside normal are all
positive. Let S*~!(\) be the hypersurface parallel to S*! at distance
A

If p1, p2, - - -, pna are the principal radii of curvature of S*~! at a
point P and dP denotes the element of area at P, the mean curvatures
of S»—1 are defined by

1
1.1y M= (Z————)dp, i=0,1,---,n—1,
sn-1 PriPrs " ° Py
where the sum is extended to the C,.-1,; combinations of ith order of
the indices 1, 2, - - -, n—1. In particular, M, coincides with the area
A of S*1,

Herglotz [6]! and, from a more general point of view, Allendoerfer
[1] have obtained the area A(A) and volume V(\) of the parallel
hypersurface S*~'(\), which can be expressed as linear functions of
the mean curvatures M; of S*! with coefficients depending upon A.
For this purpose it is enough to find the expression of A(\), that is,
Mo(\), because V(A) is then given by

(1.2) Vo) =V + f " A0)an.

The purpose of the present note is to extend these results to the
evaluation of all mean curvatures M;(\) of S»~!(A\). The resulting
formulae are also linear with respect to M;; they are (2.9) for the
elliptic case, and (3.2) for the hyperbolic case. For =0, they give
the value of A(\) obtained by Herglotz and Allendoerfer.

As a consequence, in the elliptic case we obtain the relation (4.2)
between the mean curvature of an S*—! and those of its polar hyper-
surface. Finally we obtain the equations (5.3) which hold for the
mean curvatures of convex surfaces of “constant width” in the elliptic
or hyperbolic #-dimensional spaces.

In all these questions, in order to obtain simplifications in the re-
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sulting formulas the generalized Gauss-Bonnet formula as obtained
by Allendoerfer-Weil [2] plays a fundamental role. In our particular
case of the elliptic and hyperbolic space, this formula can be written

(see [1]):

For n—1 even
(1.3) CootMp 1+ CogMu s+ - - - + CiM1 + K22V = — wnx'/2
and for n—1 odd
(1.4) CoaMp 1+ CosMa s+ - - - + CoMo = w™X'/2

where w is the surface area of a j-dimensional unit sphere (w®=2) and

n

C:= K (n—1-0)/2
Win—1—5 ’

being K=1 in the elliptic and K= —1 in the hyperbolic case. x’ is
the inner characteristic of the volume bounded by S*1; if S*~1is a
topologic sphere it is x’= —1 for n—1 even and x’=1 for n—1 odd.

2. The elliptic case. Let C; (i=1, 2,- - -, n—1) be the lines of
curvature of S*! which pass through the point P and let ds; be the
element of arc of C; at P. The element of area of S*~1 at P will be

2.1) dP = dsidsz « -+ dsp-1.

If p: is the principal radius of curvature at P corresponding to C;
and R; represents the distance from P to the contact point of the
normal to S*—! at P with the envelope of the normals to S*~! along C;,
the relation (see, for instance, [S, p. 214])

(2.2) p: = tan R;

is well known.
Furthermore if da; is the angle between two infinitely near normals
to S along C; at their intersection point,

(2.3) ds; = sin R.da.-.
From (2.1) and (2.3) we deduce

n—1
(2.4) dP = [] sin Rida.
[

Applying (2.4) to the hypersurface S*~!(\), we have

(2.5) dP(\) = ﬁ sin (R; + N)da;
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or, according to (2.4),

n—1
dP(\) = ] (sin R; cos A + cos R; sin N)da;
=1
(2.6) t

= ]I (cos A + sin A/tan R;)dP.
t=1
From the definition (1.1) and from (2.2) we deduce
1
2.7 M\ =f ( )dP)\,
2.7) @) Sn-1Q0) Z tan (R,l +2A)---tan (R,; + N) W
or, according to (2.5) and (2.4)

M\ = f > ( H cos (R,; + )

=1

n—1
- II sin (R,; + ) )de - - + datas
(2 8) Fmit1

s cos A
= — sin
L.—xz: ( 1I=Il (tan R,; s )

n—1 3
- II (cos)\ + sin A ))dP.

i1 tan R,}.

The sums are always extended over all combinations of zth order of
the indices 1, 2, - - -, n—1.

If we take into account (2.2) and the definition (1.1) of M;, from
the last equality results?

2.9) M) = 3 Mibad)

k=0

where

q
(2.10) i) = X (—1)*Cpy_,i_sCr.n SID*H5—2h ) cosn1-i=ht2h )\

h=p
where the sum is extended over all values of 4 for which the combina-

* The combinatory coefficients which appear in (2.10) are easily obtained if we
observe that the number of terms in the sum (2.8) with £ factors 1/tan R,;and coeffi-
cient sin®++~%\ cost 1=k} s C;,4Ca_1-i.k—4Ca-1.; and the number of terms in the
sum (1.1) which gives My is Cn_1.x. Therefore the product M sin¥+5~2i)\ cosn 1—i-k+28)\
appears a number of times equal to the quotient of the two foregoing combinatory
numbers, which is equal to Cp_1-4,i-aCi.a.
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tory symbols have a sense, that is
(2.11) p=max 0,74+ k—n+1), ¢ = min (7, k).
Formulas (2.9) and (2.10) solve our problem for the elliptic case.

3. The hyperbolic case. For the case of a hypersurface S*!in the
hyperbolic n-dimensional space, formulas (2.2) and (2.3) must be
replaced respectively by

3.1 ps = tanh R, ds; = sinh Rda;.

Exactly the same calculation as before gives now

n—1

(3.2) M) = 2 Mibar(N)
k=0

with

q
(3.3) ¢ix(\) = X (—1)"*Cp_1_r,isCr.» sinhi+#=2h \ cosh—1—i—k+2h ),
h=p

where p, ¢ are given by (2.11).

4. Polar surfaces. In the elliptic case it is interesting to consider the
polar surface S*~!(w/2) to the given S*1,
Applying (2.9), (2.10) for A=7/2 we obtain

(4.1 M;(ar/2) = (=1)M. 1.
If M? denotes the ith mean curvature of the polar surface, we
have M =(—1)‘M;(x/2) and consequently
(4.2) M= Mo,
For :=0
AP = M, ,,

which is a result due to Allendoerfer [1, formula (30)]. For n=3 we
get AP=M,;, M? =M, or, applying the Gauss-Bonnet formula (1.3)

Mi=M, A +4=—4xx.
The last formula is due to Blaschke [4].
5. Hypersurfaces of constant width. Let us assume 5" to be a topo-
logical sphere such that the inward drawn normal at every point P

cuts S*1 beside P at only one opposite point P*. Let A be the dis-
tance PP* measured along the normal. If A is constant for every point
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P, S*1 is said to be a hypersurface of “constant width.”

In such a case the normal at P* coincides with P*P. Indeed, if Q
is a point of S™! such that the distance PQ is a maximum (P fixed,
Q variable on S*1), QP must be normal to S*! at Q and therefore,
by assumption, distance QP =A; on the other hand, if P*P were not
normal to S*! at P* the distance PP* would not be a maximum,
thus distance PP* <distance PQ=A, contrary to the assumption.

Furthermore, according to the definition of the radii R; and the
assumption that they are not negative (see §1 and (2.2), (3.1)), the
point of contact of the normal PP* with the envelope of the normals
along each line of curvature through P does lie inside the segment
PP*; therefore for the hypersurfaces of constant width, between the
corresponding radii R;, R} at opposite points, the relation

(5.1) Ri+ Ri = A, i=12---,n—1,
holds.

We have also dP = (—1)*1dP*, and consequently (2.7) gives
(5.2) M(—A) = (—1)» =M,

which holds the same in both elliptic and hyperbolic cases.
Therefore, taking into account the relations (2.9) and (3.2) we get:
Between the mean curvatures M; of a hypersurface of constant width
A in the elliptic or hyperbolic n-dimensional space, the relations
n—1
(5'3) M:= ("1)"_‘""2 Mwik(_A): i= O, L,2,:.--,n—1,
k=0
hold, where ¢ are given by (2.10) in the elliptic case and by (3.3) in
the hyperbolic case.
Furthermore, if V is the volume enclosed by S*!, we have V(—A)
=(—1)"V and therefore (1.2) and (2.9), (3.2) give the following rela-
tion

n—1 —-A
(5.4) V=(=1)"+ (-1 Mkf dor(N)dN,
k=0 0
which must be added to the preceding ones (5.3).
The obtained relations (5.3) and (5.4) are, in general, not inde-
pendent, as the following examples will show.
ExaMmpLE 1. If =2, (5.3) and (5.4) are equivalent to the unique
relation

M, sin A — M (1 — cos A) = 0 (elliptic case),
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M, sinh A — M,(1 — cosh A) = 0 (hyperbolic case).

If L is the length and A4 the area enclosed by S!, Mo=L and the
Gauss-Bonnet formula gives M; =27+ 4 ; therefore the foregoing rela-
tions may be written respectively

(5.5) L= (2r— A)tan (A/2), L = (2= + 4) tanh (4/2).

ExaMPLE 2. For =3, if we set My=4 and take into account (1.3)
which gives My=4mr+ A4, the relations (5.3) become equivalent to

M, cos A = 2(2r — A) sin A (elliptic case),
M, cosh A = 2(2r 4+ A) sinh A (hyperbolic case).
(5.4) gives
2V =2xA— (M1/2) sin? A— (2r—A) sin A cos A (elliptic case),
2V = —2rA— (My/2) sinh? A+ (2r+A) sinh A cosh A (hyperbolic case).

(5.6)

If we take into account (5.6), the last relations can be written re-
spectively

(5.7) 4V = 4xA — My, AV = M, — 4xA.

(5.5) and (5.7) are due to Blaschke [3]. For the analogous ques-
tions in the n-dimensional euclidean space, see [7].
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