ON PARALLEL HYPERSURFACES IN THE ELLIPTIC AND HYPERBOLIC *n*-DIMENSIONAL SPACE

L. A. SANTALÓ

1. Introduction. Let S^{n-1} be a hypersurface of class C^3 in the elliptic or hyperbolic *n*-dimensional space, which is closed and bounding and whose principal curvatures with respect to an inside normal are all positive. Let $S^{n-1}(\lambda)$ be the hypersurface parallel to S^{n-1} at distance λ .

If $\rho_1, \rho_2, \cdots, \rho_{n-1}$ are the principal radii of curvature of S^{n-1} at a point P and dP denotes the element of area at P, the mean curvatures of S^{n-1} are defined by

(1.1)
$$M_i = \int_{S^{n-1}} \left(\sum \frac{1}{\rho_{r_1} \rho_{r_2} \cdots \rho_{r_i}} \right) dP, \quad i = 0, 1, \cdots, n-1,$$

where the sum is extended to the $C_{n-1,i}$ combinations of *i*th order of the indices 1, 2, \cdots , n-1. In particular, M_0 coincides with the area A of S^{n-1} .

Herglotz [6]¹ and, from a more general point of view, Allendoerfer [1] have obtained the area $A(\lambda)$ and volume $V(\lambda)$ of the parallel hypersurface $S^{n-1}(\lambda)$, which can be expressed as linear functions of the mean curvatures M_i of S^{n-1} with coefficients depending upon λ . For this purpose it is enough to find the expression of $A(\lambda)$, that is, $M_0(\lambda)$, because $V(\lambda)$ is then given by

(1.2)
$$V(\lambda) = V + \int_0^{\lambda} A(\lambda) d\lambda.$$

The purpose of the present note is to extend these results to the evaluation of all mean curvatures $M_i(\lambda)$ of $S^{n-1}(\lambda)$. The resulting formulae are also linear with respect to M_i ; they are (2.9) for the elliptic case, and (3.2) for the hyperbolic case. For i=0, they give the value of $A(\lambda)$ obtained by Herglotz and Allendoerfer.

As a consequence, in the elliptic case we obtain the relation (4.2) between the mean curvature of an S^{n-1} and those of its polar hypersurface. Finally we obtain the equations (5.3) which hold for the mean curvatures of convex surfaces of "constant width" in the elliptic or hyperbolic *n*-dimensional spaces.

In all these questions, in order to obtain simplifications in the re-

Received by the editors January 8, 1949.

¹ Numbers in brackets refer to the bibliography at the end of the paper.

sulting formulas the generalized Gauss-Bonnet formula as obtained by Allendoerfer-Weil [2] plays a fundamental role. In our particular case of the elliptic and hyperbolic space, this formula can be written (see [1]):

For n-1 even

(1.3)
$$C_{n-1}M_{n-1} + C_{n-3}M_{n-3} + \cdots + C_1M_1 + K^{n/2}V = -\omega^n \chi'/2$$

and for $n-1$ odd

(1.4)
$$C_{n-1}M_{n-1} + C_{n-3}M_{n-3} + \cdots + C_0M_0 = \omega^n \chi'/2$$

where ω^{i} is the surface area of a *j*-dimensional unit sphere ($\omega^{0}=2$) and

$$C_i = \frac{\omega^n}{\omega^i \omega^{n-1-i}} K^{(n-1-i)/2},$$

being K=1 in the elliptic and K=-1 in the hyperbolic case. χ' is the inner characteristic of the volume bounded by S^{n-1} ; if S^{n-1} is a topologic sphere it is $\chi'=-1$ for n-1 even and $\chi'=1$ for n-1 odd.

2. The elliptic case. Let C_i $(i=1, 2, \dots, n-1)$ be the lines of curvature of S^{n-1} which pass through the point P and let ds_i be the element of arc of C_i at P. The element of area of S^{n-1} at P will be

$$(2.1) dP = ds_1 ds_2 \cdots ds_{n-1}.$$

If ρ_i is the principal radius of curvature at *P* corresponding to C_i and R_i represents the distance from *P* to the contact point of the normal to S^{n-1} at *P* with the envelope of the normals to S^{n-1} along C_i , the relation (see, for instance, [5, p. 214])

$$(2.2) \qquad \qquad \rho_i = \tan R_i$$

is well known.

Furthermore if $d\alpha_i$ is the angle between two infinitely near normals to S^{n-1} along C_i at their intersection point,

$$(2.3) ds_i = \sin R_i d\alpha_i.$$

From (2.1) and (2.3) we deduce

(2.4)
$$dP = \prod_{i=1}^{n-1} \sin R_i d\alpha_i.$$

Applying (2.4) to the hypersurface $S^{n-1}(\lambda)$, we have

(2.5)
$$dP(\lambda) = \prod_{i=1}^{n-1} \sin (R_i + \lambda) d\alpha_i$$

326

or, according to (2.4),

(2.6)
$$dP(\lambda) = \prod_{i=1}^{n-1} (\sin R_i \cos \lambda + \cos R_i \sin \lambda) d\alpha_i$$
$$= \prod_{i=1}^{n-1} (\cos \lambda + \sin \lambda / \tan R_i) dP.$$

From the definition (1.1) and from (2.2) we deduce

(2.7)
$$M_{i}(\lambda) = \int_{S^{n-1}(\lambda)} \left(\sum \frac{1}{\tan (R_{r_{1}} + \lambda) \cdots \tan (R_{r_{i}} + \lambda)} \right) dP(\lambda),$$

or, according to (2.5) and (2.4)

$$M_{i}(\lambda) = \int \sum \left(\prod_{j=1}^{i} \cos \left(R_{r_{j}} + \lambda \right) \\ \cdot \prod_{j=i+1}^{n-1} \sin \left(R_{r_{j}} + \lambda \right) \right) d\alpha_{1} \cdots d\alpha_{n-1}$$

$$= \int_{S_{n}^{-1}} \sum \left(\prod_{j=1}^{i} \left(\frac{\cos \lambda}{\tan R_{r_{j}}} - \sin \lambda \right) \\ \cdot \prod_{j=i+1}^{n-1} \left(\cos \lambda + \frac{\sin \lambda}{\tan R_{r_{j}}} \right) \right) dP.$$

The sums are always extended over all combinations of *i*th order of the indices 1, 2, \cdots , n-1.

If we take into account (2.2) and the definition (1.1) of M_i , from the last equality results²

(2.9)
$$M_{i}(\lambda) = \sum_{k=0}^{n-1} M_{k} \phi_{ik}(\lambda)$$

where

(2.10)
$$\phi_{ik}(\lambda) = \sum_{h=p}^{q} (-1)^{i-h} C_{n-1-k,i-h} C_{k,h} \sin^{i+k-2h} \lambda \cos^{n-1-i-k+2h} \lambda,$$

where the sum is extended over all values of h for which the combina-

1950]

² The combinatory coefficients which appear in (2.10) are easily obtained if we observe that the number of terms in the sum (2.8) with k factors $1/\tan R_{r_j}$ and coefficient $\sin^{i+k-2i}\lambda \cos^{n-1-i-k+2i}\lambda$ is $C_{i,h}C_{n-1-i,k-k}C_{n-1,i}$ and the number of terms in the sum (1.1) which gives M_k is $C_{n-1,k}$. Therefore the product $M_k \sin^{i+k-2i}\lambda \cos^{n-1-i-k+2i}\lambda$ appears a number of times equal to the quotient of the two foregoing combinatory numbers, which is equal to $C_{n-1-k,i-h}C_{k,h}$.

tory symbols have a sense, that is

(2.11)
$$p = \max(0, i + k - n + 1), \quad q = \min(i, k).$$

Formulas (2.9) and (2.10) solve our problem for the elliptic case.

3. The hyperbolic case. For the case of a hypersurface S^{n-1} in the hyperbolic *n*-dimensional space, formulas (2.2) and (2.3) must be replaced respectively by

(3.1)
$$\rho_i = \tanh R_i, \quad ds_i = \sinh R_i d\alpha_i.$$

Exactly the same calculation as before gives now

(3.2)
$$M_i(\lambda) = \sum_{k=0}^{n-1} M_k \phi_{ik}(\lambda)$$

with

(3.3)
$$\phi_{ik}(\lambda) = \sum_{h=p}^{q} (-1)^{i-h} C_{n-1-k,i-h} C_{k,h} \sinh^{i+k-2h} \lambda \cosh^{n-1-i-k+2h} \lambda,$$

where p, q are given by (2.11).

4. Polar surfaces. In the elliptic case it is interesting to consider the polar surface $S^{n-1}(\pi/2)$ to the given S^{n-1} .

Applying (2.9), (2.10) for $\lambda = \pi/2$ we obtain

(4.1)
$$M_i(\pi/2) = (-1)^i M_{n-1-i}$$

If M_i^P denotes the *i*th mean curvature of the polar surface, we have $M_i^P = (-1)^i M_i(\pi/2)$ and consequently

$$(4.2) M_i^P = M_{n-1-i}.$$

For i=0

$$A^P = M_{n-1},$$

which is a result due to Allendoerfer [1, formula (30)]. For n=3 we get $A^P = M_2$, $M_1^P = M_1$ or, applying the Gauss-Bonnet formula (1.3)

$$M_1^P = M_1, \qquad A^P + A = -4\pi\chi'.$$

The last formula is due to Blaschke [4].

5. Hypersurfaces of constant width. Let us assume S^{n-1} to be a topological sphere such that the inward drawn normal at every point P cuts S^{n-1} beside P at only one opposite point P^* . Let Δ be the distance PP^* measured along the normal. If Δ is constant for every point

328

P, S^{n-1} is said to be a hypersurface of "constant width."

In such a case the normal at P^* coincides with P^*P . Indeed, if Q is a point of S^{n-1} such that the distance PQ is a maximum (P fixed, Q variable on S^{n-1}), QP must be normal to S^{n-1} at Q and therefore, by assumption, distance $QP = \Delta$; on the other hand, if P^*P were not normal to S^{n-1} at P^* , the distance PP^* would not be a maximum, thus distance $PP^* <$ distance $PQ = \Delta$, contrary to the assumption.

Furthermore, according to the definition of the radii R_i and the assumption that they are not negative (see §1 and (2.2), (3.1)), the point of contact of the normal PP^* with the envelope of the normals along each line of curvature through P does lie inside the segment PP^* ; therefore for the hypersurfaces of constant width, between the corresponding radii R_i , R_i^* at opposite points, the relation

(5.1)
$$R_i + R_i^* = \Delta, \qquad i = 1, 2, \cdots, n-1,$$

holds.

We have also $dP = (-1)^{n-1} dP^*$, and consequently (2.7) gives

(5.2)
$$M_i(-\Delta) = (-1)^{n-1-i}M_i$$

which holds the same in both elliptic and hyperbolic cases.

Therefore, taking into account the relations (2.9) and (3.2) we get: Between the mean curvatures M_i of a hypersurface of constant width Δ in the elliptic or hyperbolic n-dimensional space, the relations

(5.3)
$$M_i = (-1)^{n-1-i} \sum_{k=0}^{n-1} M_k \phi_{ik}(-\Delta), \quad i = 0, 1, 2, \cdots, n-1,$$

hold, where ϕ_{ik} are given by (2.10) in the elliptic case and by (3.3) in the hyperbolic case.

Furthermore, if V is the volume enclosed by S^{n-1} , we have $V(-\Delta) = (-1)^n V$ and therefore (1.2) and (2.9), (3.2) give the following relation

(5.4)
$$V = (-1)^{n} V + (-1)^{n} \sum_{k=0}^{n-1} M_{k} \int_{0}^{-\Delta} \phi_{0k}(\lambda) d\lambda,$$

which must be added to the preceding ones (5.3).

The obtained relations (5.3) and (5.4) are, in general, not independent, as the following examples will show.

EXAMPLE 1. If n=2, (5.3) and (5.4) are equivalent to the unique relation

$$M_0 \sin \Delta - M_1(1 - \cos \Delta) = 0$$
 (elliptic case),

L. A. SANTALÓ

 $M_0 \sinh \Delta - M_1(1 - \cosh \Delta) = 0$ (hyperbolic case).

If L is the length and A the area enclosed by S^1 , $M_0 = L$ and the Gauss-Bonnet formula gives $M_1 = 2\pi \pm A$; therefore the foregoing relations may be written respectively

(5.5)
$$L = (2\pi - A) \tan (\Delta/2), \quad L = (2\pi + A) \tanh (\Delta/2).$$

EXAMPLE 2. For n=3, if we set $M_0=A$ and take into account (1.3) which gives $M_2=4\pi\pm A$, the relations (5.3) become equivalent to

(5.6)
$$\begin{aligned} &M_1 \cos \Delta = 2(2\pi - A) \sin \Delta \text{ (elliptic case),} \\ &M_1 \cosh \Delta = 2(2\pi + A) \sinh \Delta \text{ (hyperbolic case).} \end{aligned}$$

(5.4) gives

$$2V = 2\pi\Delta - (M_1/2) \sin^2 \Delta - (2\pi - A) \sin \Delta \cos \Delta \text{ (elliptic case),}$$

$$2V = -2\pi\Delta - (M_1/2) \sinh^2 \Delta + (2\pi + A) \sinh \Delta \cosh \Delta$$
 (hyperbolic case).

If we take into account (5.6), the last relations can be written respectively

(5.7)
$$4V = 4\pi\Delta - M_1, \quad 4V = M_1 - 4\pi\Delta.$$

(5.5) and (5.7) are due to Blaschke [3]. For the analogous questions in the *n*-dimensional euclidean space, see [7].

BIBLIOGRAPHY

1. C. B. Allendoerfer, Steiner formulae on a general S^{n+1} , Bull. Amer. Math. Soc. vol. 54 (1948) pp. 128–135.

2. C. B. Allendoerfer and A. Weil, The Gauss-Bonnet theorem for Riemannian polyhedra, Trans. Amer. Math. Soc. vol. 53 (1943) pp. 101-129.

3. W. Blaschke, Einige Bemerkungen ueber Kurven und Flüchen von konstanter Breite, Leipziger Berichte vol. 67 (1915) pp. 290–297.

4. ——, Integralgeometrie 22: Zur elliptischen Geometrie, Math. Zeit. vol. 41 (1936) pp. 785-786.

5. E. P. Eisenhart, Riemannian geometry, Princeton, 1926.

6. G. Herglotz, Ueber die Steinersche Formel für Parallelflächen, Abh. Math. Sem. Hansischen Univ. vol. 15 (1943) pp. 165-177.

7. L. A. Santaló, Sobre los cuerpos convexos de anchura constante en E_n , Portugaliae Mathematica vol. 5 (1946) pp. 195–201.

THE INSTITUTE FOR ADVANCED STUDY AND

FACULTAD DE CIENCIAS MATEMATICAS, ROSARIO, ARGENTINA