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1. Introduction. Let S"-1 be a hypersurface of class C3 in the elliptic

or hyperbolic w-dimensional space, which is closed and bounding and

whose principal curvatures with respect to an inside normal are all

positive. Let Sn_1(X) be the hypersurface parallel to at distance

X.
If pi, 02, ■ • • , Pn-i are the principal radii of curvature of S"-1 at a

point P and dP denotes the element of area at P, the mean curvatures

of 5n_1 are denned by

(1.1) Mi= f     (Z -1-)dP,  i = 0, 1, • •■ ,* - 1,

where the sum is extended to the C„_i,< combinations of ith order of

the indices 1,2, ••■,» — 1. In particular, Ma coincides with the area

A of Sn~\

Herglotz [ö]1 and, from a more general point of view, Allendoerfer

[l] have obtained the area A(K) and volume F(X) of the parallel

hypersurface Sn_1(X), which can be expressed as linear functions of

the mean curvatures M{ of with coefficients depending upon X.

For this purpose it is enough to find the expression of A(\), that is,

Af0(X), because F(X) is then given by

(1.2) F(X) = F + f A(\)d\.
J 0

The purpose of the present note is to extend these results to the

evaluation of all mean curvatures Mi(K) of 5n_1(X). The resulting

formulae are also linear with respect to M,; they are (2.9) for the

elliptic case, and (3.2) for the hyperbolic case. For i = 0, they give

the value of A (X) obtained by Herglotz and Allendoerfer.

As a consequence, in the elliptic case we obtain the relation (4.2)

between the mean curvature of an S""1 and those of its polar hyper-

surface. Finally we obtain the equations (5.3) which hold for the

mean curvatures of convex surfaces of "constant width" in the elliptic

or hyperbolic w-dimensional spaces.

In all these questions, in order to obtain simplifications in the re-
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1 Numbers in brackets refer to the bibliography at the end of the paper.
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suiting formulas the generalized Gauss-Bonnet formula as obtained

by Allendoerfer-Weil [2] plays a fundamental role. In our particular

case of the elliptic and hyperbolic space, this formula can be written

(see [1]):

For n — 1 even

(1.3) C_iJr_, + Cn^Mn-* + • ■ • + CWi + K"»V = - o,"x'/2

and for n — 1 odd

(1.4) C„_1M„_1 4- Cn^M„^ 4-4- C„Mo = co»x'/2

where u' is the surface area of aj-dimensional unit sphere (o>° = 2) and

being K — l in the elliptic and K= — 1 in the hyperbolic case, x' is

the inner characteristic of the volume bounded by .S"-1; if is a

topologic sphere it is x' = — 1 for w —1 even and x'~ 1 for n —1 odd.

2. The elliptic case. Let d (i = l, 2,- • • , n — 1) be the lines of
curvature of Sn~l which pass through the point P and let dsi be the

element of arc of C< at P. The element of area of 5n_1 at P will be

(2.1) dP = dsidsi ■ • • dsn-i-

If pi is the principal radius of curvature at P corresponding to C<

and Ri represents the distance from P to the contact point of the

normal to Sn~l at P with the envelope of the normals to S"-1 along &,

the relation (see, for instance, [5, p. 214])

(2.2) pi = tan R{

is well known.

Furthermore if da, is the angle between two infinitely near normals

to Sn~x along d at their intersection point,

(2.3) dsi = sin Ridoa.

From (2.1) and (2.3) we deduce

n-l

(2.4) dP = PI sin Ridoa.

Applying (2.4) to the hypersurface 5n-1(X), we have

n—1

(2.5) dP(\) = II sin (Ri + \)dai
i=l
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or, according to (2.4),

»-1

(2.8)

dP(k) m YL (sm     cos A + cos Ri sm X)daj

= j7I (cos A + sin X/tan Ri)dP.
i—l

From the definition (1.1) and from (2.2) we deduce

(2.7) MiQ,) = r (y.-1-W(X).
J s-i(X) \  tan (Rn + X) • • • tan (*„. + X)/

or, according to (2.5) and (2.4)

Mi{\) = j Z ( II cos (Rrj + X)

n-l \

• H sin (R,s + X) J dai • • • dan-i

- f z(6(£r-*»)d s»-i    \ ,-i \tan i?„y /

/ sin X \\
• FI (cosX4--—))dP.

i-i+i \ tan Rfj//

The sums are always extended over all combinations of ith order of

the indices 1, 2, • • • , n — 1.

If we take into account (2.2) and the definition (1.1) of Mit from

the last equality results2

n-l

(2.9) Mi(\) = £ Mk<bik(\)

where

(2.10) *rt(X) = Z (- l)*-^_i_*.<-»Ct.ii sin'+*-2* X cos»-1-'-^2* X,

where the sum is extended over all values of h for which the combina-

1 The combinatory coefficients which appear in (2.10) are easily obtained if we

observe that the number of terms in the sum (2.8) with k factors 1/tan i?Kj.and coeffi-

cient sin*'"1"*-4^ cosn-1_i_*+J*X is Ci,hCn-\-i,h-hCn-\.i and the number of terms in the

sum (1.1) which gives Mt is Cn-i.h. Therefore the product Mt sin*+i-sflX cosn~1~'~k+lh\

appears a number of times equal to the quotient of the two foregoing combinatory

numbers, which is equal to C„_i_i,,_AC*,».
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tory symbols have a sense, that is

(2.11) p = max (0, i + k — n + 1),      q = min (i, k).

Formulas (2.9) and (2.10) solve our problem for the elliptic case.

3. The hyperbolic case. For the case of a hypersurface S"-1 in the

hyperbolic w-dimensional space, formulas (2.2) and (2.3) must be

replaced respectively by

(3.1) pi = tanh Ri,      ds, = sinh Ridcti.

Exactly the same calculation as before gives now

n—1

(3.2) Mi{\) = £ MtfniX)
t-o

with

(3.3) <MX) = i (-ly-'Cn-i-k.i-kCk.H sinn**"2* X cosh"-1-™* X,
h-P

where p, q are given by (2.11).

4. Polar surfaces. In the elliptic case it is interesting to consider the

polar surface 5B-1(7r/2) to the given 5n_1.

Applying (2.9), (2.10) for\=ir/2 we obtain

(4.1) Miiir/2) = (-lYM^i.

If MP denotes the ith mean curvature of the polar surface, we

have Mi = ( — l)<M<(7r/2) and consequently

(4.2) M f = M „_!_,-.

For i = Q

Ap =

which is a result due to Allendoerfer [l, formula (30)]. For » = 3 we

get AP = M2, M\=MX or, applying the Gauss-Bonnet formula (1.3)

Mi = Mi,  AP + A = - 4ttx'.

The last formula is due to Blaschke [4].

5. Hypersurfaces of constant width. Let us assume 5"-1 to be a topo-

logical sphere such that the inward drawn normal at every point P

cuts S"-1 beside P at only one opposite point P*. Let A be the dis-

tance PP* measured along the normal. If A is constant for every point
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P, 5n_1 is said to be a hypersurface of "constant width."

In such a case the normal at P* coincides with P*P. Indeed, if Q

is a point of 5n_1 such that the distance PQ is a maximum (P fixed,

Q variable on 5n_l), QP must be normal to Sn~l at Q and therefore,

by assumption, distance QP=A; on the other hand, if P*P were not

normal to Sn~l at P*, the distance PP* would not be a maximum,

thus distance PP*<distance PQ=A, contrary to the assumption.

Furthermore, according to the definition of the radii 7?< and the

assumption that they are not negative (see §1 and (2.2), (3.1)), the

point of contact of the normal PP* with the envelope of the normals

along each line of curvature through P does lie inside the segment

PP*; therefore for the hypersurfaces of constant width, between the

corresponding radii Rit R* at opposite points, the relation

(5.1) Ri+R* = A, i = 1,2, 1,

holds.
We have also dP= ( — l)n-1</P*, and consequently (2.7) gives

(5.2) M,(-A) = (-I)—i~'M<

which holds the same in both elliptic and hyperbolic cases.

Therefore, taking into account the relations (2.9) and (3.2) we get:

Between the mean curvatures Mi of a hypersurface of constant width

A in the elliptic or hyperbolic n-dimensional space, the relations

(5.3) Mt- C-iJ-^ElfiM-A),  i = 0, 1, 2, 1,

hold, where are given by (2.10) in the elliptic case and by (3.3) in

the hyperbolic case.

Furthermore, if F is the volume enclosed by S"-1, we have F(—A)

= (-l)"Fand therefore (1.2) and (2.9), (3.2) give the following rela-

tion

(5.4) V= (-1)"F+ (-l)-£jf* f A*„*(X)<*X,
k=0 J 0

which must be added to the preceding ones (5.3).

The obtained relations (5.3) and (5.4) are, in general, not inde-

pendent, as the following examples will show.

Example 1. If n = 2, (5.3) and (5.4) are equivalent to the unique

relation

M0 sin A — Mi(l — cos A) = 0 (elliptic case),
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Mo sinh A — Mi(l — cosh A) = 0 (hyperbolic case).

If L is the length and A the area enclosed by S1, M0 = L and the

Gauss-Bonnet formula gives Mi = 2-w+A; therefore the foregoing rela-

tions may be written respectively

(5.5)     L = (2ir - A) tan (A/2),  L = (2tt -f A) tanh (A/2).

Example 2. For n = 3, if we set M0 = A and take into account (1.3)

which gives M2 = 4w + A, the relations (5.3) become equivalent to

(5.4) gives

2F=2irA-(Mi/2) sin2 A—(2ir—^4) sin A cos A (elliptic case),

2F= -2wA-(Mi/2) sinh2 A+(2t+A) sinh A cosh A (hyperbolic case).

If we take into account (5.6), the last relations can be written re-

spectively

(5.7) 4F = 4ttA - Mi,  4V = Mi - 4ttA.

(5.5) and (5.7) are due to Blaschke [3]. For the analogous ques-

tions in the w-dimensional euclidean space, see [7].
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(5.6)
Mi cos A

Mi cosh A

2(27r — A) sin A (elliptic case),

2(2tt 4-^4) sinh A (hyperbolic case).
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