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ANNALS OF MATHEMATICS
Vol. 47, No. 3, July, 1946

CONVEX REGIONS ON THE n-DIMENSIONAL SPHERICAL
SURFACE

By L. A. SantaLé
(Received October 29, 1945)

1. Introduction

Let K be any bounded subset of n-dimensional euclidean space. If D is the
diameter of K and R the radius of the smallest spherical surface enclosing K,
it is known that the following relation holds:

n EH
(1.1) R < <2n " 2) D.

This result was obtained by H. W. E. Jung [6], [7]; for bibliography until
1934 see Bonnesen-Fenchel [3, p. 78]. More recent proofs have been given
by W. Siiss [11] and L. M. Blumenthal-G. E. Wahlin [2].

If K is now a convex set of n-dimensional euclidean space, the “breadth” B
of K is defined as the minimum distance of two parallel supporting hyperplanes
of K. Let r be the radius of the greatest spherical surface which is contained
in K. Asa kind of dual of Jung’s theorem (1.1) are known the relations

(n + 2)} :
(1.2) T for n even
1B for n odd.

For n = 2 this theorem was proved by W. Blaschke (1]; for any n by Stein-
hagen [10]; for bibliography until 1934 see Bonnesen-Fenchel [3, p. 79]. Another
proof was given by H. Gericke [4].

The purpose of the present paper is to give a generalization of inequalities
(1.1) and (1.2) to sets on the n-dimensional spherical surface. Whilst in the
euclidean case it is necessary to give an independent proof for each inequality
(1.1), (1.2) it will be enough to prove in the spherical case the generalization of
Jung’s inequality (1.1), because the generalization of the inequalities (1.2) will
then follow by d:ality.

As an application of these results we obtain two theorems (Theorem 3 and 4)
referring to convex regions on the n-dimensional spherical surface, the last of
which generalizes a known theorem [8] of Robinson.

For n = 2 a geometrical proof of the results contained in this paper has been
given by the author in [9].

2. Spherical Simplexes on S, ;

An n-dimensional spherical surface S, ; is the “surface’” of an (n 4+ 1)-dimen-
sional sphere of unit radius in the (n + 1)-dimensional euclidean space.
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CONVEX REGIONS 449

Let T, be an equilateral spherical simplex on S, 1, that is, the spherical simplex
determined by n + 1 points a1, @z, s, *** , @41 0f Sa whose mutual distances
measured on S, have the constant value I (I = edge of T,). If a; also repre-
sents the unit vectors with the origin at the center of S, and with the end
points a;, we have

2.1) ai =1, asa; = cos .

The circumscribed sphere of T, considered as an n-dimensional sphere of
S, has a spherical center ¢, which is a point of S..1 and a spherical radius E,
so that

(2.2) ¢ =1, ca; = cos R.

In order to calculate the value of R as a function of the edge I it suffices to
observe that we can put

n+l
C=Z)\.~a,~, )\;>O.
1

Since T\, is an equilateral simplex, we have \; = XA = constant, and from (2.1)
and (2.2), also

F=m+DN+nn+1)Neosl =1, ca; = cos R = X\ + nA cos !

whence

(1 + ncosl !
(2.3) COSR—(TTI—> .

We thus get the relation cos | < —1/n, which holds for any equilateral
spherical simplex of S..:.

We wish now to calculate the spherical diameter of T, . Let z, y be the end-
points of a diameter of T'». Let a1, a2, - @, (1 £ v £ n + 1) be the vertices
of the simplex T,_; of minimal dimension whose vertices are among those of
T, and which contains the point . The end-point y cannot be a point of T,
because in this case x and y would be points of the boundary of T, and x
would be contained in a simplex of dimension <». Consequently y is a point
which belongs to the simplex T,_, whose vertices are @,41, G2, **° 5 Gnt1-
Hence we have

v n+1
(2.4:) x=;)\.~a,~, Yy = ;)\.’0/5, )\,%0
with
= E)\f~+ 2 Z')x;)x,vcosl =1
1 2, 7=1
(2.5)

n+1 n+l

¥ =2 \i+2 > Anjeosl =1

v+1 Di=r+1
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where D’ denotes a summation with ; = J excluded.
The spherical distance ¢ from z to y is given by

v n+1
(2.6) Cos ¢ = xy = (E A,-)(E )\;) cos l.
1 v+1

To find the maximal value of ¢ we consider two cases:
a)l < w/2,cosl 2 0. By (2.5) we have

v 2 v v v
(EN) =2 N+2 AN =142 X AN — cos)
1 1 1

1, j=1 4=

n+l1 2 n+1 n+1 n+1
(Z >\,.> =2N+2 27 AN=142 3 A — cos 1.
v+1

v+1 1, 7=v+1 t,j=v+1

2.7)

The maximum value of ¢ corresponds to the minimum value of cos @, Or ac-

cording to (2.6) and (2.7) to Ay = L, Ay = Ny = -+ = \, = 0, M1 = 1, Ao
= M43 = -+ = My = 0. Consequently the spherical diameter of 7', equals
the edge 1

b) I > 7/2,cosl < 0. By (2.6) the maximum value of ¢ corresponds to the
maximum of the product (D 7 \;) Qo mE N with the relations (2.7). Taking
into account the inequality

(2.8) Ay = 3N 4D
and cos [ < 0, we deduce from (2.5)

29) 1

1%

S+ 3O+ A) cosl = SN+ & — 1) cos 1),
1 1 1

ii=
Moreover, since
v 2 v
(2.10) (Zm)ngﬁ
1 1
we deduce from (2.9)

(2.11) (‘14: x..>2 < 4

14+ (@—1cosl’

Analogously we get
n+1 2
Y < n—v-+4+1
(2.12) (VZF;)\’> T 14 (n—vcosl
From (2.6), (2.11) and (2.12) and cos I < 0 the inequality
. v'(n — v 4+ 1)* cos I
T+ (= 1) cos D1 + (n — ») cos D)

follows. There is equality only when \; = A\, = --- = \, and Mot1 = Noyg

= = Apy1.

(2.13)
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By considering the right hand member of (2.13) as a function of the con-
tinuous variable » and equating to 0 its derivative, we find

n—2v+1) (1+(n—1)cosl'—ncoszl) = 0.

Except the limit cases cos | = 1, cos I = —1/n, the value of » for which the
right hand member of (2.13) is a minimum corresponds to the integral solution
of the equation n — 2v + 1 = 0. Hence we have

(n+ 1) cosl
24+ (n— 1)cosl

(n(n + 2))* cos I
cos ¢ = (2 + (n — 2) cos 2 + n cos D}

The right hand member of (2.14) is the spherical distance between two op-
posite spherical simplexes T3, of T. The right hand member of (2.15) is
the spherical distance from a T,/ to the opposite T, of T .

Summing up our conclusions we have

LemMma 1. The spherical diameter Dy of an equilateral spherical simplex T,
of edge 1 has the following values:

a) If Il < n/2, Dy = 1, that is, in virtue of (2.3)

(2.14) cos ¢ = for n odd

(2.15) for n even.

(2.16) cos Do = ;L((n + 1) cost R — 1).

b) Ifl > =/2 (and always cos | = —1/n), that is, forcos R = (n + D7t ds
(n+ 1) cos

(2.17) cos Dy = 5+ (n = 1) cos for n odd
. (n(n + 2))* cos 1
(2.18) cos Dy = @ F (n = 2) cos DH2 + 7 cos 1)} for n even
or, according to (2.3)
_(m4+ 1 cos’R — 1
(2.19) cos Dy = T+ (n = D et R for n odd
cos Dy = (n+1)cos" R — 1
o= — 1
(2.20) (14 (n + 1) cos? R)%(l + @%’%——2) cos? R)
for n even.

These formulas (2.19) and (2.20) will be needed in the sequel
Let us consider now on S, a non equilateral simplex T’ and let by, bz, bs,
b.+1 be its vertices. Suppose that R is the spherical radius of the ecircum-
scrlbed sphere of T", and that the point ¢ of S, is the spherical center of this
circumscribed sphere. Let us suppose also that c¢ belongs to T.. We shall
prove the following
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LemMA 2. Among the n-dimensional spherical stmplexes on S,.; whose circum-
scribed sphere has the spherical radius R and which contain the spherical center of
tts circumscribed sphere, the equilateral simplex has a minimum diameter.

Proor. Let I be the edge of the equilateral spherical simplex T, inscribed
in the sphere of spherical radius R. We consider two cases:

1°. 1= w/2. Inthis case the spherical diameter of T, is I. We shall prove
that there exist at least one edge of 7', of length greater than {. Since ¢ is a
point of T, we can write

n+1
(2.21) ¢ =2 wb with w =0
1
where
n+1 n+1
(2.22) ¢ =2 ui+ 2 2 pepibib; = 1.
1 7,j=1

e have also
n+1 n+1

cosR=cb, and D uecosR =c Y ubi=¢c =1
1 1
whence

n+1 —1
(2.23) cos R = <E ,uk) .

1

If all the edges of T, were smaller than or equal to I, we would have b.b;
2 cos I since | £ 7/2 and, since p; = 0,
n+1 n+1

cos B = ¢b, = i+ ZI pibiby = i+ Z/ s cos .
i=1 i

since T’ is not equilateral we get, by adding fork = 1,2, 3, - - - ,n+ 1,
n+41

(mn+1)ecosR> (14 ncosl) O u
1

and from (2.23)

1 4+ necosl

n—+1
in contradiction to (2.3). This proves that at least one of the products b;b; is
smaller than cos ! and consequently at least one of the edges of T, is greater
than [

2°. 1 > n/2. In this case the diameter D, of T, is given by the formulas
(2.19), (2.20). Let us consider two cases:

a)nodd. Letusputm = 1 (n+ 1). We can write (2.21) in the form

cos’R >

n+1

m
(2.24) ¢ = Zl),‘..b.. + ;1,1,.1;.., wi = 0.

v
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If 6 is the spherical distance between the points D1 uibi/| D7 ub: | and
~l wibi/| 2omtt wib, | which belong to S, , from (2.24) we deduce

c;m=z#.-coszz=(z#,+zz M,bb)

2,j=1

n+l n41 %
(Z pi+ 2 Z pi 145 b b) (Z pit2 2 #i#ibibi> COs 4.

%,j=1 m+1 %, 7=m+1
Since I > =/2, from (2.17) it follows that Dy > #/2. If the distance & were
smaller than or equal to Dy, we would have cos § = cos Dy, and from (2.25),

‘l:,mcoq <Zuz+22m#;bb) (Zn,+22 m#]bb>

(2.25)

%j=1 7,j=1

n+l n+1/ 3}
-<Z e+ 2 Y y..wb..b,-) cos Dy = 0.

m+1 1,j=m+1

(2.26)

Since cos Dy < 0, by applying the theorem of the arithmetic and geometric
means, we obtain

;#icoq (Z#z+22ﬂzﬁlbb>

1,j=1

n+1 n+1
(Z u,+2 Z pipibiby + 2 Z u,;[ljbibj>COSDO = 0.

7,j=1 i, j=m+1

Writing this inequality for all the (n;: >possible combinations of p; , pe, « -+,

. . . 7 . .
un+1 taken m at a time and summing, we get, since T, is not equilateral and
2
c =1,

(2 e [(,2 ) St - £

n+l ntl
_1[(n+1>2ﬂ%+2a(1— Z#%>:|°°SD°>O
1 1

m

(2.27)

N

where

(2.28) @)(n; 1) _n-= l(n + 1)'

*= n—4+1 T an m
("

Taking into account (2.23) which is also valid for the present case, we have

2= ( 2 ))(E 1)
(2.29) cos Dy < <<n ;; ’1”> - 2a> i‘i . .

n+1 n+l

"““Z#z+22#.#1

cos f=1

Furthermore
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and since 2uip; < ui + uf, we have

n+l

<n+1>2#3.

By (2.28), (2.29) and (2.30) we obtain

(n4+1)cos*R — 1
14+ (n—1)cos’R "’
We have arrived at a contradiction with (2.19). This proves that the assump-
tion that all the distances § were smaller than or equal to D, is false. Conse-
quently the simplex T, has not smaller diameter than the equilateral simplex
Tn.

b) n even. Let usputm = n/2. We may proceed as above until the inequal-

ity (2.26). Then summing for all the (n ;n*— 1) possible combinations of g, ,

(2.30) TR S

cos Dy <

M2, **, Ma41 taken m at a time and applying the known Cauchy’s inequality
(see [5, p. 16])

PR TENOIT IO HE

we obtain since T, is supposed non equilateral and ¢ =1,

(m_1>nz+lu.cosR [( )nil#"*‘“( i"‘“)]
(2.31) - [(m— 1)'ilm+a<1 B i “3>:|
[( >"Z+1m+a< _ni,l%)]écosDo>0

_n—2 n , _1fn
T T \m—1) ¥ Ta\m/)

From (2.31) and (2.23) it follows that
1= 2
1

n— 2 n+l1 2);( n+l 2)&
Q¢3+;m L+ 24
and taking into account (2.30) we get

(n 4+ 1) cos’R — 1

(1 + (_n___n_z)_ls_nz-'__l) cos’ R>*(1 + (n + 1) cos* R)*

in contradiction to (2.20). Consequently the assumption that all the distances

where

cos Dy <

cos Dy <
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8 were smaller than D, was false. Hence the simplex T" does not have a smaller
diameter than the equilateral simplex T, .
This completes the proof of the Lemma 2.

3. Circumscribed Sphere to Sets on the n-Dimensional Sphere

Let us consider sets of points on 8,1, that is, on the surface of the sphere
of unit radius in the (n 4+ 1)-dimensional euclidean space. We consider only
sets which lie entirely in a hemisphere, hence, its spherical diameter D is always
< .

Given a set K on S, , the smallest sphere on S, enclosing K is called the
“circumseribed sphere” to K; let R be its spherical radius. We have R < =/2.

Our purpose is to give an inequality between R and D valid for any set K,
which will be the generalization to S, of the Jung’s inequality (1.1). That is
to say, given R we wish to find the minimum value of D. For our purpose we
can assume without loss of generality that K is a closed set.

Following the same way as in euclidean case (see Bonnesen-Fenchel [3, p. 77])
it is seen that the circumscribed sphere to K contains points of K which form a
set K’ whose spherical convex cover (konvexe Hiille, [3, p. 5]) contains the spherical
center ¢ of the circumscribed sphere. Hence we can choose points of K’ forming
the vertices of a spherical simplex 7" whose diameter is not greater than the
diameter of K, which contains the center ¢ and has the same circumscribed
sphere as T. Consequently to find the minimal value of D it suffices to con-
sider only simplexes with the same circumscribed sphere of spherical radius
which contain the center of this sphere.

Tt can happen that the dimension of 7’ be smaller than n, but as the left hand
sides of (2.16), (2.19) and (2.20) increase with n, we have, in virtue of Lemmas 1
and 2:

THEOREM 1.—For any set K on the surface S,,1 of the (n + 1)-dimensional euclid-
ean sphere of unit radius which lie on an hemisphere, the spherical diameter D of
K and the spherical radius R of its circumscribed sphere satisfy the following rela-
tions

1°. Ifcos R = (n + D7 it is

(n4+ 1)cos’R — 1
n

3.1) cos 2R < cos D £

2. If0<cosR =< (n+ 1D)titds

<(n+1)coszR—1
=14+ (n—1)cos?R

3.2) cos 2R =< cos D for n odd

(m+1)cos"R — 1

P 3
1+ (n+1) cos2R)*(1 + (—’ﬁ%ﬁ—f‘z"mco& R)

cos 2R £ cos D =

(3.3)

for n even.
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4. Inscribed Sphere in a Convex Set on the n-Dimensional Sphere

A set K on the n-dimensional spherical surface of unit radius is said to be con-
vex when: 1. It lies in an hemisphere of S,... 2. Any great circle arc of S,
whose end points lie in K, lies entirely in K.

A closed convex n-dimensional spherical set K is called a “convex spherical
region”’.

Two great spheres of S, (generalization of the great circles of the sphere in
ordinary euclidean space) divide S, into four “lunes”. Let B be the angle of
the smallest lune containing the convex spherical region K. We shall call B
the “spherical breadth” of K.

The greatest sphere on S, which is enclosed in K is called the “inscribed
sphere” of K; let r be its spherical radius.

The diametral hyperplanes perpendicular to the radii of S, which projects
the surface of the convex region K from the center of S, envelop a cone whose
intersection with S, is the surface of a new convex region K*. We shall call
K* the dual region of K.

The spherical radius r of the inscribed sphere and the spherical breadth B of
K are connected with the spherical radius B* of the circumscribed sphere and
the spherical diameter D* of K* by the relations

D* 4+ B =, R*4+r = n/2.

Consequently, transforming by duality the Theorem 1, we obtain:

THEOREM 2.  For any convex spherical region K on the surface S, 1 of the (n + 1)-
dimensional euclidean sphere of unit radius, the spherical breadth B and the spher-
ical radius r of its inscribed sphere satisfy the following relations:

1° Ifsinrz (n+ 1)atas

1 —(n+1)sin’r

4.1) cos 2r = cos B = n

2°. If0O<sinr £ (n+ 1) Hitis

1 — (n+1)sin’r
= COs = .
(4.2) cos 2r = cos B = T (o= 1) st

1— (n+1)sin2r

for m odd

cos 2r = cos B = 3
(4.3) (1 + (n + 1) sin® r)*(l + (_hn +n13|5n2_ 2) sin’ r)

for n even.

6. Passage to the Case of the n-Dimensional Euclidean Space

The formulas (1.1) and (1.2) for the euclidean space must result as a limit
case of the preceding Theorems 1 and 2 when the radius of the spherical surface
8.1 increases indefinitely.

If we now consider the n-dimensional spherical surface S, of radius a, the
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values R, D, r, B which are in the formulas of the Theorems 1 and 2, must be
replaced by R/a, D/a, r/a, B/a.

Let us first consider Theorem 1. In order that the convex spherical region
K tends to a bounded convex region of the n-dimensional euclidean space as
a — o, we must take the case cos R = (n + 1)"* and we obtain by (3.1)

(n + 1) cos’ (R/a) — 1
n

cos (D/a) =

whence, by great values of a

D? n+ 1R?
— e < —_ _
1—5st+ - =1 Tt

Simplifying and multiplying both sides by @’ and making @ — « we obtain
the inequality (1.1).

Let us now consider Theorem 2. In order that the convex spherical region K
tends to a bounded convex region of the n-dimensional euclidean space as
a— o, we must take the case sinr < (n + 1) and we obtain, by (4.2) and (4.3)

1 — (n + 1)sin’ (r/a)
14 (n — 1) sin? (r/a)

1 — (n — 1) sin? (r/a)
E
1+ (n + 1)sin® (r/a))*(l + (L-*;n%fi%g) sin’ (r/a))

for n even

cos (B/a) = for n odd

cos (B/a) =

whence, for large values of qa,
2
—E—2+ R A onl 4+ ... fornodd
2q? a?
B 2(n 4+ 1)° 7
2 4L ...>1 -4 i
2a2+ z1 n+2 a

Simplifying and multiplying both sides by @’ and making @ — « we obtain
the inequalities (1.2).

1

1 + ... for n even.

6. Two Theorems on Convex Regions on the n-Dimensional Spherical Surface

Let K be a convex region with spherical diameter D on S,,:. Clearly there
is always on S, an (n — 1)-dimensional spherical surface of spherical radius
R: = i(r — D) which intersect both K and its symmetrical region with respect
the center of S,,:.

For R = R we shall have the minimum value of R for which, for any K,
there exist an (n — 1)-dimensional sphere of spherical radius R on S, which
either encloses K in its interior or intersects both K and its symmetrical region
with respect the center of S, .
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For cos B < (n + 1) by (3.2) and (3.3) it is cos D < 0, hence D = /2,
Ry £ 7/4 and cos R, = 27%; consequently B, » R. To be R = R; we may
therefore assume that cos R = (n + 1) and then introducing in (3.1) the value
D = 7w — 2R we have

(n+ 1) cos’R — 1
n

—cos 2R =

whence

_ on \}
(6.1) tan R = <n T 1) .

For the equilateral spherical simplex on S, inscribed in the (n — 1)-dimen-
sional spherical surface of spherical radius R given by (6.1), it is D = [ (I = edge
of the simplex) and = — { = 2R. This proves that the value of R given by (6.1)
cannot be diminished.

We have established the following theorem

THeoREM 3. Let K be a convex spherical region of Sna. There is always an
(n — 1)-dimensional spherical surface of S, with spherical radius R given by
(6.1) such that it either incloses K in its interior or intersects both K and its sym-
metrical region with respect the center of S, . The value of R grven by (6.1) cannot
be diminished.

By duality this theorem can be announced

THEOREM 4. Let K be a convex region of S,.1. There is always an (n — 1)-
dimensional spherical surface of S, 1 with spherical radius r given by

_(n+ 1\
(6.2) tanr—( 2n>

such that it is either enclosed in K or has neither any point in common with K nor
with the symmetrical region of K with respect the center of Sz1. The value of r
given by (6.2) cannot be increased.

For n = 2 this theorem has been obtained by Robinson [8].
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