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: | INTEGRAL FORMULAS IN CROFTON'S STYLE ON THE SPHERE AND 
| | SOME INEQUALITIES REFERRING TO SPHERICAL CURVES 

B Y L . A . SANTAIÍÓ 

h. Introductíon. Several integral formulas referríng to convex plañe curves, 
h'notable for their great generality, were obtained by W. Crofton in 1868 and 
k successive years from the theory of geometrical probability [6], [7], [8], [9], [10]. 
1̂  A dírect and rigorous exposition of Crofton's principal results, adding some 
(new formulas, was made in 1912 by H. Lebesgue [12]. Another systematic 
/exposition of Crofton's most interesting formulas, together with the generaliza-
^tion of many of them to space, is found in the two volumes on integral geometry 
«by Blaschke [2]. 
Ç The purpose of the present paper is to give a generalization of Crofton's 
jformulas to the surface of the sphere. This is what we do in part I. We find 
Murther integral formulas on the sphere (for instance, (16), (17), (20), (21)) which 
'nave no equivalent in thé plañe. Other formulas, if we consider the plañe as 
Ime Iimit of a sphere whose radius increases indefinitely, give integral formulas 
^fernng to plañe convex curves (e. g., (34), (35)) which we think are new. 

fk In part II, with simple methods of integral geometiy [2], we obtain three in-
|équalities referring to spherieal curves. Inequality (38) is the generalization to 
|the sphere of an inequality that Hornich [11] obtained for plañe curves. (52) 
W d (58) contain the classical isoperimetric inequality on the sphere. Finally, 
íífaequality (61) gives a superior limitation for the "isoperimetric déficit" of 
iconvex curves on the sphere. 

I. FORMULAS IN THE CROFTON STYLE ON THE SPHERE 

Notation and useful formulas. The element of área on the sphere of unit 
Jçadius will be represented by dü; that is, if 6 and <p are the spherieal coordinates 
|̂i'of the point Í2, we have 

(1) dü = sin 0 do d<p. 

(|¡ A great non-directed circle C on the same sphere of unit radius can be deter-
i'mmed by one of its poles, that is, by either of the extremities of the diameter 
í| perpendicular to it. Since dü is the element of área of one of these extremities, 

^ ,{the "density" for measuring sets of great circles on the sphere is [2; 61, 80] 

| (2) 
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(Itat ÍN, the "measurc" of a set of great circlcs on the spluue is dcífined as the V 
integral of (2) extended over this set. 

It is possible to give the density (2) anothei' forra, vvhich will sometimcs be 
useful. We consider a fixed great circle Co and a fixed point A on it. The groat 
ciiclc C can be dctermined for the abscissa t of one of the intersoction points from 
C and Co and the angle a between the two circles. If 6 and <p are the sphcrical 
coordinates of the pole Q oi C with regard to the pole fio of C„, d = a, <p = t, and 
(D, (2) give 

(3) dC = sin a da di. 

Lot us consider two gioat circles C¡ , Cj and one of their intersection points íí. 
If tti and a¿ arc the angles that Ci and Cj make with another fixed great circle 
which also passes throiigh 0, the following differential formula [2; 78] is known: 

(4) (/Cl dCi = I sin («2 — a,) I da¡ dao dü. 

]}y (2), formula (4) can be transformed into a "dual" foim. Let fi, and Cl¿ be 
two points on the unit sphere and let C be the great circle dctermined by them. 
Jf (3| and P2 are the abscissas of n, and O2 on C in relation to a fixed origin on this 
circle, (4) is equivalent to 

(5) c/fil d% sin (0, - /JJ I d^, d0, dC. 

2. First integral formulas. Convex curves on the sphere. A dosed curve 
on the sphere is said to be convex when it cannot be cut by a great circle in moro 
than two points. 

A convex curve divides the surface of the sphei'e into tw ô parts, one of which 
is always wholly contained in a hemisphere; that is, there is always a great circle 
which has the whole convex cui-ve on the samé side; we only have to consider, 
for example, a tangent great circle. 

When we say a "convex figure", we understand that part of the surface of the 
sphere which is limited by a convex curve and is smaller than or equal to a 
hemisphere. 

Let us consider a convex figure K on the sphere of unit radius. l'he radii 
which are perpendicular to the tangent planes (or, more generally, to the planes 
of support) to the cone which projects K from the center of the sphere form 
another cone whose intersection with the sphere is a new convex curve K*. Wc 
shall call K* the "dual" curve of K. The lengths and arcas of K and K* are 
connected by the known relations 

(6) F* = 2ir - L, L* = 2ir - F. 

All the great circles C that cut K have their poles in the àrea bounded by 
7v* and the symmctrical curve of the same K* with respect to the center of the 
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(7) 
/ dC = L: 

this means: on the sphere, the measure of the great circles wliich cut a convex 
curve is equal to the length of this curve. This result is given by [2; 81]. 

3. Integral of the chords. Let üi and fij be two points inside the convex curve 
; K (a,lways on the unit sphere) and let C be the great circle determined by them. 
í The diíferential expression (5) can be integrated for all pairs of points within K. 
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FIGURE 1 

H p i T h e integral of the left side is F^. By calculating the integral of the right side, 
1f <p represents the length of the are of C that is contained in K (Fig. 1), we have 

/ / I sin (/3i - ^,) I c?/3i d^2 = 2(<p - sin v). 
»'0 ''O 

; Í :9) / (̂  sin <p) dC l ü 2 

% This formula gencralizes, as we shall see (§11), Crofton's formula for choids 
|/in plañe geomotrv. 

l i 
I«, 4. Principal Grofton fonnula. Let us consider all the pairs of great clrí-les 
f I '(\ , C'„ that cut K. From (7) we deduce 

1(10) 
/ dC, dC^ = L' 
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Now we can make the integration of formula (4) extend only to the pairs of 
great ei reies which cut K. If íi is fixed inside K, a, and a^ can vary from 0 to T 
and 

(11) /(fíi=' sin («1 — a^ \da 1 da^ I du = 2ir / d í 2 = 2irí': 

if Í2 is outside K, a, and a^ can vary from 0 to the angle w between the great 
circles which are tangent to K and which pass through Í2 (Fig. 2). By applying 

FiGÜBE 2 

(8), the yalue of this last integral is found to be / 2(Ü> — sin w) dSl for ü (X. K. 

Adding this result to (11), we have (10); henee 

/ ( « (12) sin w) dfi = JL — vF {Ü(IK). 

This formula has the same form as Crofton's fundamental formula of plane 
geometry. The integration in (12) is extended to all points Í2 outside K, each 
pair of points situated in the extremities of a diameter being considered as a 
single point. 

5. "Dual" fonnulas. From a convex curve K we can deduce the "dual" 
curve K* as we have seen in §2. To a great circle C which cuts K corresponds a 
point Í2* (the pole of C) which is not inside K*. The are <poiC inside K is equal 
to ir — w*, 01* being the angle between the two great circles tangent to K* drawn 
through Í2*. Since F = 2it — L* (by (6)), formula (9) can be written 

(13) J (v -co* - sin O)*) dü* = K25r - L*)' (Ü* C K*). 

The integration is extended over the outside of K* (the points which are the 
extremities of the same diameter being considered as a single point) and conse­
quen tly 

/ 
w dü* = ir(2ir - F*) (fi* C K*). 



a (4) extend only to the paira of 
C, a, and 02 can vary from O to T 

dü = 2. / dü = 2irf; 

o the angle w between the great 
lirough Í2 (Fig. 2). By applying 

I 2(0) - sin ío) dü for Ü (I K. 

rJ - fl-F {Ü(tK). 

i fundamental formula of plañe 
to all points Í2 outside K, each 
diameter being considered as a 

K we can deduce the "dual" 
le C which cuts K corresponds a 
The are ipoí C inside K is equal 
eat circles tangent to K* drawn 
Illa (9) can be written 

K 2 T - L*T (íi* C K*). 

)f K* (the points which are the 
ed a-s a single point) and conse-

F*) {Ü* C K*). 

\ï (14) 
IS. 

INTEGRAL FORMULAS FOR SPHERICAL CURVES 711 

', Then (13) gives 

f (co* + sin w*) dü* = 2irL* - •¡rF* - fL*' (O* C A:*). 

This formula holds for any convex cui-ve K*; henee it is valid for K: 

(15) / (" + ^^" ") ' ' ^ = 2irL - TTF - ^Ü {Ü(IK). 

From (15) and (12), we deduce 

I (16) / ' <dü = TL - irF (üdK) 

i and 

I (17) f smwdü = irL- AL' (fi C ^ ) -

The same procedure shows that foimula (12) is equivalent to 

f r 
l: (18) j (TT - *>* - sin v>*) dC* = K 2 T - F*)' - ,r(2^ - L*), 

j i ; where the integration is extended over all the great circles C* which cut K*. By 

I Iv (7) we have v I dC* = irL* and by substitution of this valué in (18) and writing 

the formula for K, we have 

f (̂^ f (<P + sin ^) dC = 27rí' - i F ' , 

W; where v» is the length of the are of C which is inside K. 
il From (9) and (19) we deduce 

r (20) 

I 
(<;,•• 

•fc. and 

t-
I - (21) 

f v>dC = wF, 

C-K^O 

j s'mipdC = ITF - ^F\ 

' W 
¡ W We repeat. In (16), (17), co is the angle between the two great circles t angen t 
\ Í< to K through O; in (20), (21), ^ is the length of the are of the great circle C which 
If, is inside K. 

;|; The formulas (16), (17), (20), (21) that hold for any convex curve on the unit 
g!; sphere have no equivalent in the plañe. 
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6. Formulas for the tangents. Let K he a, convex curve on the unit sphere 
with continuous radius of geodèsic curvature. 

If r is the angle between a variable tangent great circle and a fixed tangent 
great circle and if s is the length of the arc of K, the radius of geodèsic curvature 
p, is given by 

(22) 
ds 
dr' 

and the Gauss-Bonnet formula gives 

(23) j ^ ^ j dr = 2ir- F. 

Let us consider two great circles tangent to K; let Q be one of the intersection 
points of these circles. Ti and T^ will be the lengths of the arcs of these great 
circles bounded by Í2 and the points of contact (T, and T^ < ir), and we represent 
by £0 the angle between the two tangent circles at Í2 (Fig. 2). 

We wish to express the element of àrea ÍÍÍ2 as a function of the angles T, , TJ 

which determine the tangent great circles. 
For fixed TJ , as we pass from T, to T, + drj , the arc T2 is increased by dTj = 

(sin Ti/sin w)dT, . 
In the same way, as we pass from T2 to TJ + drj , the arc Ti is increased by 

dTi = (sin 7'2/sin Ü))É?T2 . 
Since the element of àrea dfi can be expressed in the form dfi = sin w dTi dTi, 

we find the desired expression 

sin Ti -sin T2 . , 
dit = : dr, ciTi 

smco 
or 

(24) smco 
sin Ti -sin T2 

dQ = dri dT<¡ 

7. We can make the integration of (24) extend over all pairs of circles tangent 
to K and, by counting each pair once only (to do this we must divide the integral 
by 2), we have, by (23), 

(25) 
j sm Ti-sm Ti (Í2 C K)-

Likewise, as in the preceding cases, the notation ü (X. K indicates that the 
integration must be extended over all points Í2 outside K; the points situated in 
the extremities of a diameter are considered as a single point. 
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8. Let p"*, p " ' be the radii of geodèsic curvature of K at the points of contact 
of the tangent gieat circles through fi. By virtue of (22), (24), we have 

n ' " p " ' 
sin to -.—-k,—'•—;;r dQ, = ds^ds^ sin 7',-sin T^ 

By integrating this expression over all pairs of tangent great circles, counting 
each pair once only, we get 

(26) [ sin co - ^ 4 r ^ - V díi = ^Ü 
J sin Ti-sin T^ 

9. By (22) and (24), we have 

¿fi = dsi dTi 

(fi C K). 

s in ü) sin Ti-sin 7^ 

and by integrating over all great circles tangent to K and observing that each 
point fi is a common factor of two terms, it follows that 

(27) /

Cl) I ( 2 ) 

^^-sinV.siñV/" = ̂ ^^--^^ ("^^-
10. "Dual" formulas. According to §5, from formulas (25), (26), (27) we can 

deduce the respective "dual" formulas. 

FIGURE 3 

If <p is the length of the are of the great circle C which is inside K and «i , «2 
are the angles that C makes with the great circles tangent to K at the intersection 
points of C with K (Fig. 3), formula (25) gives 

(28) / 
smy 

sm ofi sm «2 
dC = hL\ 

We observe that the "dual" element of ds is dr* for the dual curve K* and 
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reciprocally. Then the dual expression of p„ = ds/dr will be dT*/ds* 
Henee, formula (26) gives 

= 1/p?. 

(29) 
/

sin <p 
sin «i-sií 

1 
sm a ^ ^ > '^^ = ^(2- - F). sm aj p̂  p̂  

Likewise, formula (27) gives 

(30) / sm <p 
sm «1 -sm «2 

(-!- + -!-) 
\ (1) ' (2) / 
V/J» o, / 

dC = (27r - F)L. 

11. Passage to the case of the plane. The elassical Crofton formulas for the 
plane must result as a special case of the preceding formulas when the radius of 
the sphere increases indefinitely. Moreovei-, by this procedure, we shall find 
some new integral formulas. 

We observe the following. (i) The element of àrea dü on the unit sphere can 
be replaced by dP/R^, where dP is the element of àrea on the sphere of radius R 
and, as i? —> °° ,dP will be the element of àrea in the plane. (ii) Let us consider 
the form (3) for dC; for the sphere of radius R this expression (3) must be replaced 
by dC = sin a daidta/R), where tn is the length of the arc of the great circle of 
the sphere of radius R; when R increases to » , (3) is lim RcüC = dG, dG being 
the "density" of the straight lines of the plane (recali that the "density" dG can 
be wiitten dG = sin a da dt, where a is the angle which G forms with another 
fixed straight line and t is the abscissa of the intersection point [2; 7]). (iii) When 
we consider a sphere of radius R, the àrea F and length L which arc in formulas 
from §§2-10 must be replaced by F/R"^ and L/R, i-espectively. 

When these remarks are taken into account, the preceding foi'mulas give the 
following results. 

(i) Let us consider formula (9). If a is the length of the arc that the great 
circle C detennines in K, then ip = a/R and for R large we have 

íp — s m <p 
3!/2' 5!ñ' 

If dC and F are replaced in (9) by dG/R and F/fí^, as R —^ » we have 

(31) I a^ dG = 3F\ 

This is the elassical chord formula from Crofton [9; 84], [10; 27], [2; 20]. 
(ii) Formula (12) maintains the same form for the plane. Indeed, CÜ and sin co 

do not change; dí2 becomes dP/R^, F becomes F/R', and L becomes L/R; in 
the limit as 72 —> <», formula (12) does not change. It is the "principal" Crofton 
fon-nula for the plane [9; 78], [10; 26], [2; 18]. 

(iii) Formulas (16), (17), (20), (21) have no equivalent in the plane, since. 
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when these formulas are written for the sphere of radius R, as ñ —> <» the right 
side increases indefinitelj'. 

(iv) In formula (25), we must replace sin Ti and sin T'à bj ' Ti/R and T2/R, 
the element of área dü by dP/R', and F by F/R''. In the limit as ñ -^ <», we find 

(32) / 
s m íM 

T,T, 
dP = 27r' {P d K). 

In this well-known formula ([12]; see also W. Blaschke, Differentialgeometrie 
I, p. 49), Ti and T^ are the lengths of the tangents to the convex curve K drawn 
through P , dP = dx dy is the element of ai-ea on the plañe, and w is the angle 
between the tangents at P. 

For formulas (26), (27), it is only necessary to observe that the radü of geodèsic 
curvature become the radü of the ordinary curvature of the plañe curve. Henee 
formulas (26) and (27) give the known formulas [12] 

(33) / 
s i n c o | | | ^ d P = JL^ / sin O) P\ + Pz 

TiT, 
dP = 2irL 

(P C K). 

(v) Formula (28), when <f> is replaced by c/R (a is the length of the are that 
the great circle C determines in K and in the limit it is the length of the chord 
that the .straight line G determines in K) and R increases indefinitely, gives 

(34) [ -. ~. dG = hL\ 
j smai-sma2 

a¡ and a.¿ are the angles that the straight line G makes with the tangents to K at 
the intersection points of G with K. The integration in (34) is extended over 
all the straight lines G which cut K. 

Likewise, (29) and (30) give for the plañe 

(35) 
/ 

•K?¡C 

¡ 
P1P2 sm «1 sm «2 

(Pi + P2)o-
P1P2 sin «1 sin «2 

dG = 2ir', 

dG = 27rL, 

where p, and p2 are the radü of curvature of the convex curve K at the inter­
section points of G with K. 

II. SOME INEQUALITIES REFERRING TO SPHERICAL CURVES 

12. A known formula. Hitherto we have only considered relations on the 
. sphere between a convex curve K and points and great circles. Now we wish to 
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establish some new relations which arise from considering on the sphere sets of 
variable small ei reies of constant spherieal radius. 

Let £ be a rectifiable curve (not necessarily convex) of length L on the unit 
sphere. We consider on the same sphere a small circle Co of spherieal radius 
P (p ^ 5""), whose length and àrea will be 

(36) Lo = 2ir sin p, Fo = 27r(l — cos p). 

Let Í2 be the center of the circle Co and, as in §1, dí2 the corresponding element 
of àrea of the sphere. If n represents the number of intersection points of the 
curve £ with the circle C„ (n will be a function of ü), we have the known formula 

/ n dí2 = - LLo 

I 

or 

(37) I ndQ = 4Lsin p; 

the integration is extended over the whole sphere. 
This formula is a particular case of Poincaré's formula of integral geometry 

[2; 81]. In [2], the formula is established only for spherieal curves composed of 
a finite number of arcs with a continuously tuming tangent. More generally, 
formula (37) is also vàlid for the case of a curve JE.only supposed to be rectifiable 
and a circle Co • The proof can be copied step by step from that given for 
Euclidean space of n dimensions in [13]. 

13. An inequality refening to rectifiable curves on the sphere. In this section 
we generalize for curves on the sphere an inequality that Homich obtained for 
Euclidean space [11]. The proof is analogous to that given for Euclidean space 
in [13]. 

Let us consider on the sphere of unit radius the rectifiable curve £ of length L. 
Let F be the àrea filled by the points of the sphere whose spherieal distance from 
£ is p < jir. 

We shall prové that 

(38) í" < 2L sin p + 25r(l - cos p) 

and establish the conditions for the equality in (38). 
Let Mi (i = 0, 1, 2, 3, • • •) be the àrea covered by the centers of the circles 

of radius p whose distance to £ is not greater than p and which have i points in 
common with £. 

By (37), we have 

(39) M^ + 2M2 + 3ilf3 + 4M4 + 

and according to the definition of the àrea F, 

= 4L sin p, 

5 
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(40) M, + M,-\-M, + M,+ 

From (39) and (40) we deduce 

(41) 2F - 4L sin p = 2A/o + M^ - (M^ + 2Mt + •). 

We consider the arc of a great circle of length D {< tr) which joins the extrem-
ities of the given curve £ (if this curve is closed, D = 0). Let us call Mt (i = 0, 
1, 2) the àrea covered by the centers of the circles of spherical radius p which 
have i points in common with this arc of length D (for i = 0 the arc is interior 
to the circle). 

The àrea fiUed by the points whose distance from the arc of length D is not 
less than p < JJT is limited by two arcs of circles parallel to this arc at the distance 
p and two semicircles of radius p at the ends. The value of this àrea is 
22) sin p + 27r(l — cos p) and we can write 

:(42) Mo* + Mf + Mt = 2D sin p + 2ir(l - cos p). 

By (37) we have also 

(43) Mf + 2M? = 4£) sin p. 

ĝ  From (42) and (43) we deduce 

: f (44) 2ilf? + Mf = 4^(1 - cos p). 

' We observe that if the circle C of radius p contains in its interior the curve £, 
' i t contains also the arc D. Henee Mo < M?. Likewise if C cuts £ in only one 
1 point, it has one of its extremities in the interior and the other in the exterior 
I and so the arc D cuts the circle C also at only one point, that is to say, Mi < Mf. 
[ I t foUows that, by (41) and (44), 

,; 2F - AL sin p < 2Mo* + Mf - (M3 + 2ilf4 + • • •) 

= 4fl-(l - cos p) - (M, + 2M4 + • • •): 

henee 

(45) F + f(M, + 2M4 + • • •) < 27r(l - cos p) + 2L sin p. 

This inequality implies (38). 
The equality in (38) will be verified only if ilf. = 0 for ¿ > 3 and moreover 

il/o = M?, Ml = Mf. The condition M^ = 0 for ¿ > 3 carries with it M, = Mf; 
since in the case when the circle C cuts in only one point the arc of the great 
circle which joins the extremities of £, it must cut £ in an odd number of points. 
Consequently, the conditions for equality are: 

(i) Mi = 0 (for i > 3). The curve £ cannot be cut by the circle C in more 
than two points. 

(ii) Mo = M'S, that is to say, if the circle C contains in its interior the two 
extremities of the curve £, it contains also the whole curve. 
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In particular, if the given curve £ is closed, the equalitj' in (38) is vàlid only 
in the case of reduction to a point. 

14. Isoperimetríc inequality on the sphere. Let K be a convex curve on the 
sphere of unit radius. We consider the exterior parallel curve to K at the 
distance p < §ir. This curve cannot have double points and its àrea is easy to 
calcúlate. The àrea is [3; 81] 

(46) S = F + Lsinp + 2ir(l - cos p) - F( l - cos p), 

or, w ith the vàlues (36) of the àrea and the length of the circle of radius p, 

(47) 5 = ^ + ^0 + ^ (LLo - FF„). 

Let us put, as in the last section, M, {i = 0, 2, 4, 6, • • •) for the àrea covered 
by the centers of the circles of radius p which have i points in common with K 
{Ma will be the àrea covered by the centers of the circles of radius p each of which 
contains K in its interior or which is contained in the interior of K). Since K 
is a closed curve, i is always even. 

The expression (47) is equivalent to 

(48) Mo + M, + M4 + • • • 

and formula (37) gives 

(49) M^ + 2M4 + 3Mo + 

f + Fo + ¿ : (LLo - FFa) 

= - LLo . 

Let us consider a radius p such that Mt¡ = 0, that is, such that the circle of 
radius p neither can be totally interior to K nor can contain K in its interior. 
From (48) and (49) we deduce then 

(50) M, + 2M5 + • • • = ¿ : (̂ -̂0 + FF^) - (F + Fo). 

We observe that, by (36), Lo -\-F\- 4irFo = 0; henee we can write the identity 

1 

(51) 
2T 

iLL„ + FFo) - iF + F„) 

= -J- [{L' + F' - 4irF) - (L - Lof - (F - FoT] 

and (50) givcs 

(52) 17 -\-F' - ÍTF = (L - Lo)' + (F - FoY + MM^ + 2M, + •••)• 

! 

i 

file://-/-F/-
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le equalitj' in (38) is valid onlv 

3t K be a convex curve on the 
3r parallel curve to K at the 
e points and its área is easj' to 

— ^(1 — eos p), 

h of the circle of radius p, 

4,6, • • •) for the área covered 
ve i points in common with K 
circles of radius p each of which 
n the interior of K). Since K 

that is, such that the circle of 
can contain K in its interior. 

Fo) - {F + F,). 

henee we can write the identitj-

F)-{L- Lof -{F - Fof] 

)' + 4^(M. + 2M, + •••)• 

"I Since the second member of this cquality always > O, we obtain the classical 
I isoperimetric ineciuality on the spherc 

í | (53) L' + F 4TF > 0. 

í | This inequahty has often been proved. Sec [1], [3] and [2], and the bibliography 
I in [4; 113]. For proof with methods of integral geometry analogous to those we 
1; follow in this paper, see [2; 83]. 

M Equality (52) is valid when /*'„ and L„ are the área and length of any circle 
I which neither contains K in its interior ñor is contained in the interior of K. In 
g particular, if C? is the smallest circle which contains K in its interior and Co is 

, 'l the greatest circle which is contained in K, by neglecting the non-negative sum 
I f 4 + 2M„ + • • • , we have 

1(55) 

7/ + F' - 4irF > (L - UY + {F - FoY, 

V + F' - 4TF > {14 - Vf + (Fo* - F)\ 

V, Taking into account the general inequality 

1(56) x' + v'> W + v)\ 
I we may combine inequalities (54) and (55) into the inequality 

,.(57) Ü + F^ - 4rF > (̂ * 2 M' + (J* 2 M 

I'This is a better form than (53) for the isoperünetric inequality. 
If we substitute for L„, L?, F„ , Ft their valúes (36), relation (57) gives 

'(58) L' + í " - 4t^F > 4 T ' sin' ^u í"» 

p where r^ and r„ are the spherical radii of the circles C* and Co 
À-. T. Bonnesen [3; 82] has obtained the inequality 

2 ^M'~Zm U + F' 4irF > 4w' tan' 

•̂ r which is better than our (58). His proof i.s completelj' different from ours. 
For a sphere of radius R, inequality (57) takes the form 

5 # which as 72 —> 00 gives the inequality 

I (60) IJ- 4.F > (^'^-^y = AVM - r„)̂  

I .. . . ,̂  
;..|. which is a well-known isoperimetric inequality for plañe curves established by .Bonnescn [3; 63], [4; 113]. 
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15. An upper limitation for the isoperimetríc dèficit of convez spherical curves. 
We now consider only convex curves K with continuous radius of spherical 
curvature. We understand by radius of spherical curvature the hmit of the 
spherical radius of the circle which has three points in common with the curve 
as these points approach coincidence. This radius p {p < è"") is connected with 
the radius of geodèsic curvature p, by 

p, = tan p. 

Let pu be the greatest radius and p„ the .smallest radius of spherical curvature 
(both < jir). We wish to prové that 

(61) L' + í " /Lf . ^p < I ^? - ^0 + El— 
- ) " 

where Lo , Fg , L*, F* are now the lengths and areas of the circles whose radii 
are p„ and PM respectively. 

Likewise, as the àrea of the exterior parallel curve to K at distance p was 
expressed by (46), when we consider the interior parallel curve to i í at a distance 
P ^ Pm , this curve will not have double points and its àrea is equal to 

(62) — L sin p + F cos p + 27r(l — cos p). 

If we take p = p„ , àrea (62) will be the àrea covered by the centers of the 
circles of radius p„ which are contained in the interior of the convex curve K. 
If we represent this àrea by Mo, we can write 

(63) Mo = - L sin p„ + F cos p„ + 25r(l - cos p„). 

We now wish to find the value of the àrea covered by the centers of the circles 
of radius PM each of which contains K entirely in its interior. For this purpose 
we note that when the circle of radius pu contains K in its interior, by a "dual" 
transformation (§2) the transformed circle (of radius ^ir — PM) will be contained 
in the interior of the tran-sformed curve K* (whose length and àrea are 2ir — F 
and 2T — L respectively). The àrea covered by the centers of the circles of 
radius PM each of which contains K in its interior will then be given by (62) if we 
substitute p for ^ir — pa,, F for 2ir — L, and L for 27r — F. 

I t follows that this àrea is given by 

(64) M^ = - L sin PAÍ + F cos PM + 2ir(l - cos PM). 

This has the same form as (63). 
Let Lo, Fo and Lf, F* be the lengths and areas of the circles of radius p„ 

PM respectively, given by (36). Formulas (63) and (64) take the form 
and 

(65) M„ = F + F„ - ¿ : (LLo + FFo) 
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When we take into account identity (51), these equalities give 

(67) L' + F' - 4irF = (L - L,)' + {F - F,f - 4,rM„, 

I (68) L' + F' - 4irF = (L* - Lf + (F? - F)' - i^Mt 

Since Mo and il/? are non-negative, we havc 

L' + F' - 4irF <{L- Uf +{F - F„f, 

L' + F' - 4wF < (LS - Lf + {F* - F)\ 

;f (69) 
I 

(70) 

These inequalitios give a first upper limit for the isopcrimetric déficit 
ifV + F^-4irF. 
•V i,, From inequalities (69) and (70) we find 

* 1(71) / / + F^ - 4irF <{L- L, + F - F^f. 

JJ + F' - 4TF < (L* - L + F* - F)\ 
íf' 
I; (72) 

I . 

,• |í¡) Since the left sides are non-negative by (53) and since 

|<,' by multiplication of (71) and (72), we find 

•i 
I (73) Ü + F' - 4TF < (^* ~ ^° + ^* ~ ^o) 

i\. For a sphere of radius R we have 

,1 
' i (74) L' - 4^F + — < (^* ~ ^•' + *̂ ~ '̂ °V 

R' - \ 2 ^ 2R / ' 

7/ - 4^F < i(i4 - L„r = ^'(PM - p„.)^ 

and as ñ —> 00 

I where p,„ and p„ are the greatest and the smallest radii of curvature of the plano 
l'í convex curve K of longth L and área F. 

This inequality (75) is a known inequality obtained by Bottcma [5]; seo al.so 
b.[4; 83]. 
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