’é_ INTEGRAL FORMULAS IN CROFTON’S STYLE ON THE SPHERE AND
;‘" SOME INEQUALITIES REFERRING TO SPHERICAL CURVES

By L. A. SANTALS

““, Introduction. Several integral formulas referring to convex plane curves,
) \ notable for their great generality, were obtained by W. Crofton in 1868 and
3 ¥ guccessive years from the theory of geometrical probability {6}, {7], (8], [9], [10].
f A direct and rigorous exposition of Crofton’s principal results, adding some
new formulas, was made in 1912 by H. Lebesgue [12]. Another systemaitic
/ éxposition of Crofton’s most interesting formulas, together with the generaliza-
Ytion of many of them to space, is found in the two volumes on integral geometry
by Blaschke [2].

. ‘_; The purpose of the present paper is to give a generalization of Crofton's
¥ tformulas to the surface of the sphere. This is what we do in part I. We find
urther integral formulas on the sphere (for instanece, (16), (17), (20), (21)) which
\ve no equivalent in the plane. Other formulas, if we consider the plane as
e limit of a sphere whose radius increases indefinitely, give integral formulas
ferring to plane convex curves (e. g., (34), (35)) which we think are new.

In part II, with simple methods of integral geometry {2], we obtain three in-
ualities referring to spherical curves. Inequality (38) is the generalization to
he sphere of an inequality that Hornich [11] obtained for plane curves. (52)
and (58) contain the classical isoperimetric inequality on the sphere. Finally,
: ;hequahty (61) gives a superior limitation for the ‘‘isoperimetric deficit” of
nvex curves on the sphere.

I. FORMULAS IN THE CROFTON STYLE ON THE SPHERE

1. Notation and useful formulas. The element of area on the sphere of unit

dC = dg;
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that is, the “measure” of a set of great circles on the sphere is defined as he “Q{.
integral of (2) extended over this set. i3

It is possible to give the density (2) another form, which will sometimes he ?,’
useful. We consider a fixed great circle C, and a fixed point A on it. The great {
circle ' can be determined for the abscissa ¢ of one of the intersection points from ¥
C and C, and the angle o between the two circles. If 8 and ¢ are the spherical igs
codrdinates of the pole Q of C' with regard to the pole @, of Cy, 0 = a, ¢ = ¢, and §
(1), (2) give ,»

(3) " dC = sin a de dt.

=S

Let us consider two great circles C, , C; and one of their intersection points .
If @, and «, arc the angles that C, and C, make with another fixed great circle
which also passes through @, the following differential formula [2; 78] is known:

- (4) dC, dC; = | sin (a2 — &) | da, da, dQ. ~‘

By (2), formula (4) can be transformed into a “dual” form. Let £, and €, he
two points on the unit sphere and let C be the great ecircle determined by them.
If B, and B, are the abscissas of @, and @, on C in relation to a fixed origin on this
cirele, (4) is equivalent to

(6) daQ, dQ, = | sin (8, — B.) | dB. dB. dC.

2. First integral formulas. Convex curves on the sphere. A closed curve
on the sphere is said to be conver when it cannot be cut by a great circic in more
than two points. g

A convex curve divides the surface of the sphere into two parts, one of which
is always wholly contained in a hemisphere; that is, there is always a great circle
which has the whole convex curve on the same side; we only have to consider,
for example, a tangent great circle.

When we say a “convex figure’’, we understand that part of the surface of the

sphere which is limited by a convex curve and is smaller than or equal to a ;
hemisphere. g )

Let us consider a convex figure K on the sphere of unit radius. The radii
which are perpendicular to the tangent planes (or, more generally, to the planes
of support) to the cone which projects K from the center of the sphere form
another cone whose intersection with the sphere is a new convex curve K*. We

shall call K* the “dual” cwrve of K. The lengths and arcas of K and K* ave i '
connected by the known relations -

(6)

F* =2 — L, L* =2 —F.

- All the great circles C that cut K have their poles in the area bounded by
K* and the symmetrical curve of the same K* with respect to the center of the
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sphere. This area cquals 4% — 2F* = 2L. Counting each pair of points which

.
}/ i) are the extremities of a diameter as a single point, and taking into account the
. value (2) of the density dC, we have

{

g O

this means: on the sphere, the measure of the great circles which cut a convex
i curve is equal to the length of this curve. This result is given by [2; 81].

b i 3. Integral of the chords. Let @, and , be two points inside the convex curve
g{ K (always on the unit sphere) and let C be the great circle determined by them.
; }5; The differential expression (5) can be integrated for all pairs of points within K.

: Figure 1

o he integral of the left side is F>. By calculatmg the integral of the right side,

wf ¢ represents the length of the arc of C that is contained in K (Fig. 1), we have

_/(; j; 'Sin (ﬁl - .32) l dBl dﬁz = 2(¢ — sin qo)-

o) [ 0~ sing ac =y,
ey

C K0

This formula generalizes, as we shall see (§11), ClOftOIl s formula for chords
‘m plane geometry.

4. Principal Crofton formula. Let us consider all the pairs of great circles
, € that cut K. From (7) we deduce

f dC, dC, = L’.

CyK#0
Ci+K#0
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Now we can make the integration of formula (4) extend only to the pairs of

great circles which cut K. If Q is fixed inside K, @, and @, can vary from 0 to » ;
and '

(11) f(fo'fo'|sin(a,—a,)|da,da,)dsz=21rfdn:m;

OcK

if @ is outside K, &, and a, can vary from 0 to the angle  between the great
circles which are tangent to K and which pass through @ (Fig. 2). By applying

5

Q

Figure 2

(8), the value of this last integral is found to be f 2(w — sinw) dQ for @ ¢ K.
Adding this result to (11), we have (10); hence

(12) f (0 — sin @) 4@ = 3L — #F @ C K).

This formula has the same form as Crofton’s fundamental formula of plane !
geometry. The integration in (12) is extended to all points @ outside K, each

pair of points situated in the extremities of a diameter being considered as a
single point.

5. “Dual” formulas. From a convex curve K we can deduce the ‘“dual” ; ,
- eurve K* as we have seen in §2. To a great circle C which cuts K corresponds a .
point Q* (the pole of C) which is not inside K*. The arc ¢ of C inside K is equal '
to r — w*, w* being the angle between the two great circles tangent to K* drawn
through Q*. Since ¥ = 2x — L* (by (6)), formula (9) can be written

(13) [ @ =t —sina® dor = d@r - 1 (@ TKY).
The integration is extended over the outside of K* (the points which are the

extremities of the same diameter being considered as a single point) and conse-
quently

f x dQ* = (2 — F¥%) @* ¢ K*.
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Then (13) gives

T

b (14) f (* + sin w*) dO* = 27L* — #F* — 3L*  (2* € K¥).

This formula holds for any convex curve K*; hence it is valid for K:

(15) f (@ + sin ) d@ = 2L — 7F — 3L @ C K).
3 From (15) and (12), we deduce
' &
. [odg=aL—wr @C K)
\ and
‘4 (17) | [sinwde = 2L — 317 @ C K).
' : The same procedure shows that formula (12) is equivalent to
(18) [ &=t —sinen) dc* = 4@ — P9 — n2r — LY,
: C*-Rex0

e

% where the integration is extended over all the great circles C* which cut K*. By
; (7) we have # f dC* = xL* and by substitution of this value in (18) and writing

the formula for K, we have

o
LE 9) [ G+ sing)de = 2aF — 317,
~; gt ¢ K0
}K" where ¢ is the length of the arc of C' which is inside K.
£ ?“ From (9) and (19) we deduce
@0 [ eic=ar,
,“ " C K0
% and
8
L) [ singdc = aF — 35,
' C-K»0
We repeat. In (16), (17), w is the angle between the two great circles tangent

to K through ©; in (20), (21), ¢ is the length of the arc of the great circle ¢ which.

f
(\: . . -
‘ ;}‘ is inside K.

‘¥, The formulas (16), (17), (20), (21) that hold for any convex curve on the unit
. sphere have no equivalent in the plane.




i
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6. Formulas for the tangents. Let K be a convex curve on the unit sphere
with continuous radius of geodesic curvature.

If 7 is the angle between a variable tangent great circle and a fixed tangent
great circle and if s is the length of the arc of K, the radius of geodesic curvature
po 18 given by

ds
(22) Py = dr’

and the Gauss-Bonnet formula gives

23) ?=fdr=21r—F'.
K [

Let us consider two great circles tangent to K; let Q be one of the intersection
points of these circles. T, and T, will be the lengths of the arcs of these great
circles bounded by © and the points of contact (T, and T, < =), and we represent
by w the angle between the two tangent circles at @ (Fig. 2).

We wish to express the element of area d as a function of the angles r, , 7,
which determine the tangent great circles.

For fixed 7, , as we pass from 7, to 7, + dr, , the arc T, is increased by dT, =
(sin T,/sin w)d7, .

In the same way, as we pass from 7, to 7, 4 dr;, the arc T, is increased by
dT, = (sin Ty/sin w)dr, .

Since the element of area d2 can be expressed in the form d = sin w dT, dT,,
we find the desired expression

SiIl T1 ‘Sin Tz
=smavsm s,
SN w

aQ d‘l'z

or

@4) : sin w

mdﬂ = dr, dry .

7. We can make the integration of (24) extend over all pairs of circles tangent

to K and, by counting each pair once only (to do this we must divide the integral
by 2), we have, by (23),

_SNw o 10

(25) fsin T smT, dQ = 3@2r — F) (e C K).
Likewise, as in the preceding cases, the notation @ @ K indicates that the

integration must be extended over all points @ outside K; the points situated in

the extremities of a diameter are considered as a single point.

o T~ et s e o o
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8. Let py'’, pi¥’ be the radii of geodesic curvature of K at the points of contact
of the tangent great circles through Q. By virtue of (22), (24), we have

ay (2)

mdﬂ = ds;ds, .

By integrating this expression over all pairs of tangent great circles, counting
each pair once only, we get

(1) (2)
26) fsmw—p” P 4o = AL @ C K).

sin T, -sin T2

9. By (22) and (24), we have

(1)

3 ——p!_—__ =
sin w snT.sm T, dQ = ds, dr,

- and by integrating over all great circles tangent to K and observmg that each

S

g

: » point £ is a common factor of two terms, it follows that

dQ = L2r — F) (@ K).

sin T'y-sin 1',

10. *‘Dual” formulas. According to §5, from formulas (25), (26), (27) we can

T

i
o
‘ ﬁrf . Figure 3

g If ¢ is the length of the arc of the great circle C which is inside K and &, , o,

. " are the angles that C makes with the great circles tangent to K at the intersection

“. points of C with K (Fig. 3), formula (25) gives

(28) f SBe g0 = 12
sin «, -sin a,

C-K#0

We observe that the “dual” element of ds is dr* for the dual curve K* and
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reciprocally. Then the dual expression of p, = ds/dr will be dr*/ds* = | /p?. =

Hence, formula (26) gives i (
. i
sing 1  1fo _ 2 ]
(29) f sin a,-sin a, p{" pi» dC = 3@r — F).
C+Kw0

Likewise, formula (27) gives .

et et TSR T T T

(30) f _sme (L4 L)oo @r-pL
SN a; -SIN «, P Py
C+K»0
\
11. Passage to the case of the plane. The classical Crofton formulas for the \i’?
plane must result as a special case of the preceding formulas when the radius of 2 |

the sphere increases indefinitely. Moreover, by this procedure, we shall find
some new integral formulas. |
We observe the following. (i) The element of area dQ on the unit sphere can 2!
be replaced by dP/R?, where dP is the element, of area on the sphere of radius R
and, as R — o, dP will be the element of area in the plane. (ii) Let us consider
the form (3) for dC; for the sphere of radius R this expression (3) must be replaced
by dC = sin a da(dtz/R), where { is the length of the arc of the great circle of
the sphere of radius R; when R increases to «, (3) is lim R-dC = dG, dG being i !
the ‘“‘density” of the straight lines of the plane (recall that the “density’’ dG can I %
be written dG = sin a« da df, where a is the angle which G forms with another §
fixed straight line and ¢ is the abscissa of the intersection point [2; 7]). (iii) When K i
we consider a sphere of radius R, the area F and length L which are in formulas 'R
from §§2-10 must be replaced by F/R* and L/R, respectively. 8 |
When these remarks are taken into account, the preceding formulas give the i

following results. y, ‘
(i) Let us consider formula (9): If ¢ is the length of the arc that the great .
circle C determines in K, then ¢ = o/R and for R large we have K'j P
3 5 )

. [+ o ]

— 8In = —_— ~ ce e, . A

¢ °T3m TR T

If dC and F are replaced in (9) by dG/R and F/R?, as R — « we have

31) f & dG = 3.
G-K»=0

This is the classical chord formula from Crofton [9; 84], [10; 27], [2; 20].
(it) Formula (12) maintains the same form for the plane. Indeed, w and sinw

do not change; dQ becomes dP/R? F becomes F/R?, and I becomes L/R; in

the limit as R — «, formula (12) does not change. It is the “principal”’ Crofton

formula for the plane [9; 78], [10; 26], [2; 18].

(iit) Formulas (16), (17), (20), (21) have no equivalent in the plane, since,
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when these formulas are written for the sphere of radius R, as R — <« the right
side increases indefinitely.

(iv) In formula (25), we must replace sin 7, and sin T, by 7,/R and T,/R,
the element of area dQ by dP/R?, and F by F/R?. Inthelimit as R — o, we find

32) 31“;’ dP = 2° (P C K).
In this well-known formula ([12]; see also W. Blaschke, Drfferentialgeometrie
I, p. 49), T, and 7', are the lengths of the tangents to the convex curve K drawn
. through P, dP = dx dy is the element of area on the plane, and w is the angle
4 between the tangents at P. '
¢ For formulas (26), (27), it is only necessary to observe that the radii of geodesic
! curvature become the radii of the ordinary curvature of the plane curve. Hence
% formulas (26) and (27) give the known formulas [12]

e

. P1P2 . 172 : LT P + P2 =
fsmw T.T, dP = L, fsmw T.T, dP = 2xL

. (33)
14 | (P C K).

£ & (v) Formula (28), when ¢ is replaced by o/R (o is the length of the arc that
" the great circle C determines in K and in the limit it is the length of the chord
hat the straight line G determines in K) and R increases indefinitely, gives

A .

34 -9 = 172
i _\<34) f sin «a, -sin a;, @ = 3L".

38 G-E#0
"a; and a, are the angles that the straight line G makes with the tangents to K at
the intersection points of G with K. The integration in (34) is extended over
all the straight lines G which cut K.

: ?{( Likewise, (29) and (30) give for the plane

1 f S N— Y

8 p1P2 SIN @) SIN oy

\y[ (35) G-K=0

Q’,‘ f __(_pl_.__""_P?)_"'__dG = 9L
“:\ o, PP sin «, sin oy !

" where p; and p, are the radii of curvature of the convex curve K at the inter-
"% section points of G with K.

g II. SOME INEQUALITIES REFERRING TO SPHERICAL CURVES

‘; ‘i{ 12. A known formula. Hitherto we have only considered relations on the
. sphere between a convex curve K and points and great circles. 'Now we wish to -
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establish some new relations which arise from considering on the sphere sets of
variable small circles of constant spherical radius.

Let £ be a rectifiable curve (not necessarily convex) of length L on the unit
sphere. We consider on the same sphere a small circle C, of spherical radius
p (p < im), whose length and area will be

TTme—s T

(36) Ly = 27 sin p, Fy = 22(1 — cos p).

——
AT A ST

Let Q be the center of the circle C, and, as in §1, d©2 the corresponding element
~ of area of the sphere. If n represents the number of intersection points of the
curve £ with the circle €', (n will be a function of Q), we have the known formula

—
e S

==

fnd(2=1grLL,,,

PP

or

PR

@)  [nda=4Lsing

A

NP A S g i g T o (R BB

the integration is extended over the whole sphere.

This formula is a particular case of Poincaré’s formula of integral geometry
{2; 81]. In [2], the formula is established only for spherical curves composed of
a finite number of ares with a continuously turning tangent. More generally,
formula (37) is also valid for the case of a curve £ only supposed to be rectifiable
C and a circle C, . The proof can be copied step by step from that given for
' Euclidean space of n dimensions in [13].

e R T T

13. An inequality referring to rectifiable curves on the sphere. In this section
we generalize for curves on the sphere an inequality that Hornich obtained for
Euclidean space {11]. The proof is analogous to that given for Euclidean space
in {13]. ' ‘

Let us consider on the sphere of unit.radius the rectifiable curve £ of length L.
Let F be the area filled by the points of the sphere whose spherical distance from
Lisp < i ‘

We shall prove that

T T
R ANEE IS

T ————

i)

(38) F < 2L sin p + 27(1 — cos p) ?“;
and establish the conditions for the equality in (38). ?‘:‘3{
Let M, (: = 0,1, 2,3, ---) be the area covered by the centers of the circles i,“%
of radius p whose distance to £ is not greater than p and which have ¢ points in l“
common with £. tw‘f
By (37), we have b

39)

M1+2M2+3M3+4M4+ et =4LSinp,

and according to the definition of the area F,
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= 4L sin p,

j p and two semicircles of radius p at the ends.
dis: 2D sin p + 2x(1 — cos p) and we can write

IR M} + M¥ + M} = 2D sin p + 2x(1 ~ cos p).
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 (40) Mo+ M, + Mo+ My+ - =F.

Z From (39) and (40) we deduce

i

@ 4 9F — 4L sin p = 2My + M, — (M, + 2M, + ---),

ﬁ:ﬂ We consider the arc of a great circle of length D (< ) which joins the extrem-
ities of the given curve £ (if this curve is closed, D = 0). Let us call M* ( = 0,

f’n%“ 1, 2) the area covered by the centers of the circles of spherical radius p which

have 7 points in common with this arc of length D (for ¢ =

4. to the circle).
The area filled by the points whose distance from the arc of length D is not
less than p < i is limited by two ares of circles parallel to this arc at the distance
The value of this area is

0 the arc is interior

2M% 4+ M¥ = 4x(1 — cos p).

We observe that if the circle C of radius p contains in its interior the curve £,

r 1t contains also the arc D. Hence M, < M¥. Likewise if C cuts £ in only one

pomt it has one of its extremities in the interior and the other in the exterior
y and so the arc D cuts the circle C also at only one pomt that is to say, M, < M¥%.

B ! Tt follows that, by (41) and (44),

2F — 4L sin p < 2M% + M} — My + 2M, + ---)

= 4n(l —cosp) — (My+2M, + ---);

'+ hence

i (45) F4 3(Ms+ 2M, + ---) < 2x(1 — cos p) + 2L sin p.

; This inequality implies (38).

i The equality in (38) will be verified only if M; = 0 for ¢ > 3 and moreover
L\ M, = M2, M, = M. The condition M, = 0for i > 3 carries with it M, = M¥;
\’5 since in the case when the circle C cuts in only one point the arc of the great
A circle which joins the extremities of £, it must cut £ in an odd number of points.
Consequently, the conditions for equality are:

(i) M. = 0 (for ¢ > 3). The curve £ cannot be cut by the circle C in more
i#>. than two points.

‘~ (i) M, = M¥, that is to say, if the circle C contains in its interior the two
{, extremities of the curve £, it contains also the whole curve.
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In particular, if the given curve £ is closed, the equality in (38) is valid only
in the case of reduction to a point. '

14. Isoperimetric inequality on the sphere. Let K be a convex curve on the
sphere of unit radius. We consider the exterior parallel curve to K at the
distance p < 3w. This curve cannot have double points and its area is easy to
calculate. The area is [3; 81]

(46) S=F+4 Lsinp + 2r(1l — cos p) — F(1 — cos p),

or, with the values (36) of the area and the length of the circle of radius p,
47) 8 =F+Fot o (LL, — FF.

Let us put, as'in the last section, M, (z = 0, 2, 4, 6, - - -) for the area covered
by the centers of the circles of radius p which have ¢ points in common with K
(M, will be the area covered by the centers of the circles of radius p each of which
contains K in its interior or which is contained in the interior of K). Since K

is a closed curve, 7 is always even.
The expression (47) is equivalent to

“® Mo+ My+ M+ -+ = F + Fo +5- (LLo — FFJ)
and formula (37) gives

(49) M,+2M,+3M,+ - =

3 |

LL, .

Let us consider a radius p such that M, = 0, that is, such that the circle of

radius p neither can be totally interior to K nor can contain K in its interior.
From (48) and (49) we deduce then

L
(50) M4+2ﬂ[6+"'=§r(LL0+FFO)_(F+FO)‘
We observe that, by (36), L2 + F2 — 4xF, = 0; hence we can write the identity

o (LLy + FF) — (F + Fo
(51) 4

1 2 2 2 . 2
= - + F* — 4nF) — (L = L’ — (F = Fo)’]

and (50) gives
(52) L4 F* — 4xF = (L — Lo)* + (F — Fo)> + 4x(M, + 2Ms + ---).
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‘ Since the second member of this equality always > 0, we obtain the classical
¢ isoperimetric inequality on the sphere

i (53) L+ F? — 4xF > 0.

VJ . This inequality has often been proved. See [1], [3] and [2], and the bibliography
b} in [4; 113).

For proof with methods of integral geometry analogous to those we

follow in this paper, see [2; 83].

¢ Equality (52) is valid when F, and I, are the area and length of any cncle

. which neither contains K in its intevior nor is contained i in the interior of K. In

particular, if C¥ is the smallest circle which contains K in its interior and C, is
. the greatest circle which is contained in K, by neglecting the non-negative sum

LM, + 2M, + - , we have

L'+ F* — 4xF > (L — L) + (F — F.)?,
L* + F* — 42F > (L — L)* + (F¥ — F)".

. Taking into account the general inequality
2+ 9y > 3+ )

‘we may combine inequalities (54) and (55) into the inequality

) (Fo )

4 This is a better form than (53) for the isoperimetric inequality.
* If we substitute for L, , L¥, F,, , F'¥ their values (36), relation (57) gives

- (57) L'+ F* — 4aF > (L° =

L + F° — 4xF > 4« sin® ’—‘-’——2“—”2-

T. Bonnesen [3; 82] has obtained the inequality

- T
2 »

which is better than our (58). His proof is completely different from ours.
For a sphere of radius R, inequality (57) takes the form

2 z ? L::—Lo)* (@_—h)?

L+ F® — 4xF > 4x° tan® £

2
L} — 4nF > (L_Q___z__lj_‘)_) = 1!‘2(7'M - rm)z;

which is a well-known isoperimetric moqua,hty for plane curves established by
Bonnesen [3; 63] (4; 113].

s
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15. An upper limitation for the isoperimetric deficit of convex spherical curves,
We now consider only convex -curves K with continuous radius of spherical
curvature. We understand by radius of spherical curvature the limit of the
spherical radius of the circle which has three points in common with the curve
as these points approach coincidence. This radius p (p < i7) is connected with
the radius of geodesic curvature p, by

p, = tan p.

Let pu be the greatest radius and p,, the smallest radius of spherical curvature
(both < 37). We wish to prove that

L . *® __ 2
61) D'+ F — anF < (Lo - LO+IF0 - Fo),

where L, , F, , L¥, F¥ are now the lengths and areas of the circles whose radii
are p,, and p, respectively. , '

Likewise, as the area of the exterior parallel curve to K at distance p was
expressed by (46), when we consider the interior parallel curve to K at a distance
p < pa, this curve will not have double points and its area is equal to

(62) — Lsinp + Fcosp + 27x(1 — cos p).

If we take p = p,, , area (62) will be the area covered by the centers of the
circles of radius p,, which are contained in the interior of the convex curve K.
If we represent this area by M, , we can write

(63) M, = — Lsin p,, + F ¢os p. + 27(1 — €0S pn).

We now wish to find the value of the area covered by the centers of the circles
of radius p, each of which contains K entirely in its interior. For this purpose
we note that when the circle of radius p, contains K in its interior, by a “dual”
transformation (§2) the transformed circle (of radius 37 — p,) will be contained
in the interior of the transformed curve K* (whose length and area are 2r — F
and 27 — L respectively). The area covered by the centers of the circles of
radius p, each of which contains K in its interior will then be given by (62) if we
substitute p for 3= — py , F for 2r — L, and L for 2r — F.

It follows that this area is given by

(64) M¥ = —Lsin py + F cos py + 2a(1 — cos py).

This has the same form as (63).
Let L, , Fo and L¥, F# be the lengths and areas of the circles of radius p.. and
px respectively, given by (36). Formulas (63) and (64) take the form

(65) M0=F+Fo—’§1;'r(LLo+FF0)
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:f. and
E 3 (66) M} = F + Ff — 51;<LL3‘ + FF§).
; 4} When we take into account identity (51), these equalities give
J .;*f\) (67) L'+ F* — 4aF = (L — Lo)* 4+ (F — F,)* — 4zM, ,
! ﬁ‘ (68) L* + F* — 4xF = (L¥ — L)’ + (F¥ — F)* — 4w M3,
" Ji: Since M, and M¥ are non-negative, we have.
‘. %] (69) L* + F* — 4aF < (L — Lo)' + (F — F.)},
B IO L'+ F* ~4nF < (Lf = LY + (I ~ F)".
] wz L2T_:ie;'ez Tef:;htlc% give a first upper limit for the isoperimetric deficit
!‘ ; From inequalities (69) and (70) we find
£ L'+ F* — 4xF < (L ~ Ly + F — F,).
]‘_: f(72) L*+ F* — 4«F < (L} — L+ F¥ — F)"

;Since the left sides are non-negative by (53) and since

\ i . 2
i zy < (ﬁ-y) ,
i f*;‘(.

by multiplication of (71) and (72), we find

. — —_ 2
- (13) L’+F"’—47rF§(L°2L°+F‘?2F°).
For a sphere of radius R we have
. _ F (L: ~ L, , Ft - Fo)’ ’

andasR—»oo,

(75) I = 4aF < MLE — L)* = now — pu)’,

, whele px and p,, are the greatest and the smallest radn of curvature of the planc
convex curve K of length L and area F.

This inequality (75) is a known inequality obtained by Bottema [5]; see also
; 83].
’
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