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1. Introduction 

The Integral Georaetiy on surfaces has been considered by 
BLASCHKK [2 ] ,HAiMovict [5 ], VIDAL ABAFCAL [9 ] and the author [7 ]. 
In § 2, 3, 4, 5 of the present paper we coimider some pointa of the 
Integral Geometry in a Riemannian n-dimenHÍonal space. We start 
with the definition of density for sets of geodèsics and obtain some 
integral formulas (for instance (3.2) and (5.3)) which generalize to 
Riemannian spaces well known results of the Euclidean space. 

In § 6 we consider, as particular rases, the elliptic and hyper-
bolic spaces and we give some integral formulas referring to convex 
bodies in these spaces. 

In § 7 the elliptic space is considered in more detall. The 
"duality" which holds in this space permits the obtention of some 
more integral formulas. 

In what follows w,- shall represent the àrea of the Euclidean i-di­
mensional unit sphere and Xt the volume bounded by it, that is, 

2_(.+i)/2 2 7r'*+"'^ 

r( t - i - i ) /2) ' " ' (¿-I-i)r(t-H i)/2) 

2. Density for sets of geodèsics in a n-dimensional 
Riemannian space 

Let i?„ be a n-dimensional Riemannian space defined by 

'•) McDUBcrito reMbido ii 2 de julho de IVSl. 
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(2.1) dé = Çijdx'dx' 

and let us introduce the foUowing no ta tions 

(2.2) F = (ffüzV)« , Pi = dFldx'. 

The density for sets of geodèsics is the folio wing exterior diffe-
rential form, taken always in àbsólute value, 

n 
(2.3) d(? = S [dpidxK .. dpi-idx'-^dpi+idx'+K . .dp^dx"]. 

t - i 

The measure of a set of geodèsics will be the integral of dG ex­
tended over the set. 

The density (2.3) is the (n — l)th power of the exterior diffe-
tential invariant form S [dp, dx* ] which integral constitutes the 
invariant integral of Poincaré of the dynamics [3, p. 19,78 ]. There-
fore it possesses the following two fundamental properties of inva-
riance: a) It is invariant with respect to a change of coordinates 
in the space; 6) It is invariant under displacements of the elements 
{x\ Pi) on the respective geodèsic. 

In order to give a geometrical interpretation of the density dG 
let us consider a fixed hypersurface iS"~* and a set of geodèsics which 
intersect (S"~^ Let G be such a geodèsic and P its intersection 
point with /S"~'. In a neighborhood of P we may assume that the 
equation of S^~' is a;" = 0 and that the coordínate system is ortho-
gonal, that is , 

ds' = guidx')'' + gziidj^r + • • • + Çnnidxy 
and thus 

dxi 
P' = "̂ di • 

If a* represents the cosine of the angle between G and the x' -
coordínate curve at P, we have 

,-dx' 

and 
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j . = Vgua' , dpi = Vguda' + - ^ ? V dx'' (2.4) dx' 

In order to determine G, acording to the property 6) of inva-
riance of dG, we may choose its intersection point P with S"" ' . At 
the point P it is x" = 0, dx'* = 0 and consequently the density 
(2.3) takes the form 

dG = [dpidx\..dp„-i dx""M 

or, according to (2.4), 

(2.5) dG = (í7iií722-. .9n-i.n-iy'Hda^da^.. .da"-'dx\ . .da;"-i ]., 

If d(J rcpresents the element of (n —l)-dimensional àrea on <S"~' 
wc have 

d<r = (fiTii g22 • • .?n-i,n-i)^'- dx' dx^.. .dx"" ' . 

On the other hand the element of àrea on the (n —l)-dimensional 
unit sphere of center P corresponding to the direction of the tangent 
to ÍT at P has the value 

/ 9 ^ ^ rf,, [ d a ' . . . d a " - M 
(2.()) dwn-i = 1—Ti • 

la I 

Henee we have 

(2.7) dG = la"! [dun-ida ] = | cos ^ | [dun-ida ] 

whsre a" = cos <p is the cosine of the angle <p between the tangent 
to G and the normal to /S"~^ at the point P. 

3. Geodèsics which intersect a fixed hypersurface 

The cxpression (2.7) of dG gives immediately a very general inte­
gral formula. Let f{<T,(p) be an integrable function defined on 
S"~' depending upon the point P{(T) und upon the direction <p at it. 
Multiplying both sides of (2.7) by/(<r, <p) and performing the inte-
gration over the hypersurface S"" ' and the half of the (n—l)-di-
mensional unit sphere (in order to consider non-oriented geodèsics), 
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in the left si de each geodèsic G appears as common factor of the sum 
(fe / ((Ti, <pi) of the vàlues of / (<r, (p) at the m intersection points of 
0 with /S"~^ Consequently we have 

(3.1) / S / (ff,-, <pi) dG = I I fi<r,<p)\ cos (f I d<r da>„-i. 

-' '"' iwn-

For instance, if fi(T,<p) = 1, the integral of ( cos <p I dw„_i gives 
a half of the projection of the (n —l)-dimensional unit sphere upon 
a diametral plañe; consequently we get 

(3.2) J mdG = Xn-2F 

where Xn-2 isgiven by(l.l) and m denotes the numberof intersection 
points of G and /S"~^ The integral is extended over all geodèsics 
which intersect /S"~' and F represents the àrea of/S"~'. 

4. Convex domains 

We shall say that a simple closed hypersurface S"~' is convex 
when any geodèsic which intersects it has either two points or a 
whole arc in common with 5""^ In this case, if <S"~' has a finite 
àrea F, the measure of the geodèsics which have a common arc 
with iS"~* is zero and consequently (3.2) gives: the measure of the 
geodèsica cutting a convex hypersurface ofarea F is equal to ^ Xn-iF. 

A domain Q in our Riemannian space will be said to be con­
vex when the foUowing three properties are satisfied: 1. It is 
bounded by a closed convex hypersurface; 2. It is homeomorphic 
to a (n — l)-dimensional sphere; 3. Every geodèsic with a point P 
interior to Q can be prolonged from P in both senses to points 
outside 'Q. 

Let S"~* be a hypersurface of àrea F contained in the interior 
of a convex domain Q; let F^ be the àrea of the boundary S^~^ of 
Q, According to the foregoing condition 3 every geodèsic which 
intersects S""^ will also intersect <So"~'. Consequently (3.2) gives the 
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foUowing mean valué for the number of intersectiou points of 
(S"~^ and all geodèsics which cut SJ'~^ 

(4.1) m* = I mdGI fdG = 2 F/F,. 

As an immediate consequence we have the theorem 
Given a hypersurface of àrea F contained inside a convex domain 

bounded by a hypersurface of àrea F„, there exist geodèsic Unes which 
intersect S""' in a number of points > 2 FjFo-

Exactly the same method applied to (3.1), yields the more ge­
neral theorem: 

Given a hypersurface S"~' contained inside a convex domain bound­
ed by a hypersurface of àrea Fo and an integrable funcíion f (<r, <p) 
depending upon the points P (ff) of S"~^ und upon the angles <p around 
the normal to S"~' at P, there exist geodèsic Unes Gfor whose inter-
section points Pi = P (d) {i = 1, 2, . . ., m) with S^~^ the relation 

(4.2) i:f{<ri,<pi)^ —I / f((T,(p)\co8<p \dadun-i 
1 Xn-2toJ J 

holds, where <pi is the angle at Pi between G and the normal lo /S"~'. 

5. Sets of geodèsic segments 

Let t be the arc length on the geodèsic G. From (2.7) we deduce 

(5.1) [dG dt ] = I cos ^ I [dw„-id<r dt ]. 

The product | cos ^ I dt equals the projection of the arc element 
dt upon the normal to the hypersurface S^~^ at the point P. Con-
sequently (cos <p \ da dt represents the element of volume dP of 
the given Riemannian space at P. Consequently (5.1) may be 
written in the form 

<5.2) [dGdt] = [dPddn-i]. 

An oriented segment S of geodèsic can be determined either by 
G, t (G = geodèsic which contains S, t = abscissa on G of the origin 
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of S) or by P, a>„-i (P = origin of S, ío„-i = point ou the unit sphere 
which gives the direction of <S). The two equivalent differential 
forms (5.2) may thcrefore be taken as doii.sity for sets of segments 
of geodèsic lines. 

Let us consider the measure of the sot of oriented segments <S 
with the origin inside a fixod domain D. The integral of the left 
hand side of (5.2) gives 2 where a denotes the lenght of the 
arc of G which lies inside D (the factor 2 appears as a consequence 
that dG means the density for non-orieuted geodèsic lines). The 
integral of the right side of (5.2) is equal to co„-iF, where V is the 
\()lume of D. Consofiuently we have tho following integral formula 

/ « (5.3) / adG = iu„-iV 

which for >t = 2, 3 goneralizes woll kuowii results of the integral 
geometry of the Euclidean spaces. 

6. An integral formuja for convex bodies in spaces of 
constant curvature 

Let R„ be now a Riemannian space of constant curvature K. 
With respect to a system of polar coordinates it is known that the 
element of length can be written in the form (4, p. 240 ], 

((U) d^ = dp^ + 5 5 ü ^ ^ r f X V x 

where p denotes tlie geodèsic distance from a fixed point (origin 
of coordinates) and dXn-i represents the element of length of the 
(n —l)-dimen8Íonal unit sphere. The element of volume will take 
the form 

(6.2) d P . ? 5 ^ ¿ ! ^ [ d p d « „ - i l 

where da>n-i denotes the element of àrea on the (n—l)-dimen8Íonal 
unit sphere. 
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Let Pi, Pi be two points in /¿„ and let G be the geodèsic whicn 
unites them. Let pi, P2 be the abscissas on G of Pi and P2. With 
respect to a system of geodèsic polar cooidinates with the origin 
at Pi, the element of volume dPi has the form 

/« „\ JO sen" ' V J C |p2—Pil r I 
(6.3) dP2 = ^j;r-v)p—^ \.<ÍP2 do)n -1 

By exterior niultiplication by rfPi we have in consequence of 

(6.4) [dPi rfP2 1 = ' ' ^ ^ ^ T ' T ^ ' [dp. dp, dG ]. 

This formula was givon followiiig difforent way by HAIMO-

vici [6]. 
Let us consider the casc n = 3. If Q is a convex domain of 

vohime F and we consider all the pairs of points Pi, P2 inside Q, 
the integral of the left side of (6.4) is equal to F^. If ff denotes 
the length of the arc of G which lies inside Q, by calculating the 
integral of the right sidc, we have 

J íúnWK\p2 - pi I dp^dpi - i (<'" - ^ sin^VXffj 
0 0 

Henee we have the integral formula 

^̂ •̂ ^ ~^ f v ~ ^ s i n V x <r jdG = 2 F2 

where the integral is extended over all the geodèsics which inter-
•sect Q. 

For the elliptic space {K = 1) this formula reduces to 

(6.6) y («r' - 8in2 (r) dC = 2 F» , 

and for the hyperbolic space (üí = — 1) 
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(6.7) A s h V - (T2) dG » 2 y2 . 

For the Euclidean space (K = 0) we observe that 

and consequently we have 

((5.8) í<T*dG = 6 ^2 , 

which is a well known formula [1, p. 77]. 

7. Integral formulas for convex bodies in the elliptic space 

In the elliptic ít-dimensional space all nf'xlesios are closed and 
have the finite Icngth w. The hyperplaues have finite àrea 
Jwn-i. Since any geodèsic intersects a fixed hyperplane in one 
and only one point, formula (3.2) gives the measure of the set of 
all geodèsics of the n-dimensional elliptic space: 

/ - * " (7.1) ' / dG = èx«-2 Wn-i. 

Let Q be u convex body of àrea F and voUime V and let us con-
sider the set of geodèsic segments of length v which intersect Q. 
The integra! of tho left side of (5.2) extended over this set is 

(7.2) ídG d( = T ídG = è T x..-¿ F 

and the integral of the right .side of (5.2) is 

(7.3) ídFd(J„-i = è Wn-i V + ííldP 

where Í2 denotes the angle under which Q is soen from P (P ex­
terior to Q). From (7.2) and (7.3) we deduce 

/a.p. (7.4) / n dP = è T Xn-2 F - è w„-, ]-. 
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For instance for n = 2 we get the known formula [8 ], 

(7.6) fudP = TrL-irF 

where L denotes the length of Q and F ¡ts área. 
For »i = 3 we have 

/ 
(7.6) / í2dP = i i r 2 F - 2 7 r F . 

In the elliptie space to each integral formula referring to convex 
bodies corresponda another one by "duality". For the sake of 
simplicity we shall consider the case n = 3; the case n = 2 wae 
already considered in [8 ]. 

Let M, F, V be the integrated mean curvaturc, área and volume 
of a given convex bmly Q. For the dual conex body Q* it is known 
that we have 

(7.7) F* = 4ir - F, M* = M , V* = ir^ - M - V . 

By duality to each straight lino G corresponde another straight 
line G* and henee, having into account (7.7), the formula (5.3) writes 

/ 
(TT - ^•) dG* = 2T (7r2 - M* - V*) 

where <p* denotes the angle between the two support planes to Q 
through G* and the integral is extended over all G* exterior to Q. 
Having into account (7.1) and (3.2), and by replacing G* by G, we 
have the integral formula 

(7.8) y ^ dG = 2 ir (3/ + y) - è TT" F 

which has no analogous in the Euclidean geometry. 
Let US now consider the formula (6.6). Applied to the dua 

convex body Q* we have 

/ ' 
[(T - <p')^ - sin2 ,p*]dG* ~2{ir'- M* - V*y 

from which and (7.8), (7.1), (3.2) it follows that 
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I ( ^ — siir (7.!)) / («P̂  - «iii^ <p)dG = 2{M + F)2 - i r ' F 

whcrp, as in (7.8), <p doiiotes thc aug\e betwpoii thc two planes of 
support through G and the integral is extended over all G exterior 
to Q. 

For the elliptic space of cnrxature K = l/ñ^ the formula (7.9) 
becomes 

and bj ' /¿ -> <=°, after multiplioation by /¿^ ŷg ĝ .̂  

/ (<̂  2 - se n2 <f)dG = 2 NP - li-K^F 

which is tiu' well known formula due to HEROLOTZ which corres-
ponds to (7.9) for the 3-dimensional Euclidean space [1, p. 79 ]. 
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