MEASURE OF SETS OF GEODESICS IN A RIEMANNIAN
SPACE AND APPLICATIONS TO INTEGRAL FORMULAS
IN ELLIPTIC AND HYPERBOLIC SPACES (*)

By L. A. Sa~TALS

1. Introduction

The Integral Geometry on surfaces has been considered by
Brascukrk [2 ] ,Haimovict (3 ], VIDAL ABascaL [Y | and the author [7 ].
In § 2, 3, 4, 5 of the present paper we consider some points of the
Integral Geometry in a Riemannian n-dimensional space. We start
with the definition of density for sets of geodesics and obtain some
integral formulas (for instance (3.2) and (5.3)) which generalize to
Riemannian spaces well known results of the Euclidean space.

In § 6 we consider, as particular cases, the elliptic and hyper-
bolic spaces and we give some integral formulas referring to convex
bodies in these spaces.

In § 7 the elliptic space is considered in more detail. The
“duality’”’ which holds in this space permits the obtention of some
more integral formulas. .

In what follows w, shall represent the area of the Euclidean ¢-di-
mensional unit sphere and X, the volume bounded by it, that is,

2 itz Q U+
TTe+n/2 0 X T A+ G+ nR

(ll) W

2. Density for sets of geodesics in a n-dimensional
Riemannian space

Let R, be a n-dimensional Riemannian space defined by
*) \anuscrito recsbido a 2 de julho de 1951.
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2 L. A. SaNTALG

(2.1) ds? = g,; dr'dr’
and let us introduce the following notations
2.2) F = (gjz'e)% |, p; = OF)dz".

The density for sets of geodesics is the following exterior diffe-
rential form, taken always in absolute value,

.3
(2.3) dG = I [dpdz'. .. dpidz*ldpiprdr'tt. | dp.dz™].
i=1

The measure of a set of geodesics will be the integral of dG@ ex-
tended over the set.

The density (2.3) is the (n — 1)th power of the exterior diffe-
tential invariant form X [dp, dr'] which integral constitutes the
invariant integral of Poincaré of the dynamics [3, p. 19,78 ]. There-
fore it possesses the following two fundamental properties of inva-
riance: a) It is invariant with respect to a change of coordinates
in the space; b) It is invariant under displacements of the elements
(z*, p:) on the respective geodesic.

In order to give a geometrical interpretation of the density dG
let us consider a fixed hypersurface S*~! and a set of geodesics which
intersect S*~1. Let G be such a geodesic and P its intersection
point with S*~!, In a neighborhood of P we may assume that the
equation of 8"~ ! is 2" = 0 and that the coordinate system is ortho-
gonal, that is

\

ds? = {51 l(dwl)2 + 922(d-772)2 + ...+ gnn(qxn)z
and thus :

=g, 0
pl‘-guds .

If o' represents the cosine of the angle between G and the T -
coordinate curve at P, we have

P —dz*
a' =V

- and
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MEASURE OF SETS OF GEODESICS 3

(2.4) pi = Vet dpi = Vuda! + =3 1 0l da .

In order to determine G, acording to the property b) of inva-
riance of dG, we may choose its intersection point P with 8"~1. At
the point P it is 2" = 0, dz" = 0 and consequently the density
(2.3) takes the form

dG = [dpydz!...dps—1 dz*" 1]
or, according to (2.4),
(2.5)  dG = (g11922. . .gn—1,n-1)"?[da’ do?. . .da""dz'. . .dz"71 ],

If do represents the element of (n—1)-dimensional area on S*~!
we have
do = (g11 922 - -Gn-1.n-1)"? dz' dz?. . .dz"" L.
On the other hand the element of area on the (n—1)-dimensional

unit sphere of center P corresponding to the direction of the tangent
to G at P has the value

1 n—1
(2.6) dim—y = [de ...'t‘ia ]
la™ |
Hence we have
Q.7 dG = |a"| [dws—do] = Icos ¢| ldwn—do]

where a” = cos ¢ is the cosine of the angle ¢ between the tangent
to G and the normal to S*~! at the point P.

3. Geodesics which intersect a fixed hypersurface

The cxpression (2.7) of d@ gives immediately a very general inte-
gral formula. Let f(o, ¢) be an integrable function defined on
87! depending upon the point P(¢) und upon the direction ¢ at it.
Multiplying both sides of (2.7) by f (¢, ¢) and performing the inte-
gration over the hypersurface $*~! and the half of the (n—1)-di-
mensional unit sphere (in order to consider non-oriented geodesics),

SUMMA BRASILIENSIS MATHEMATICAE, vol. 3, fasc. 1, 1952
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in the left side eachgeodesic G appears as common factor of the sum
& f (i, @i) of the values of f (o, ¢) at the m intersection points of’
G with 8"71. Consequently we have

3.1 f ?f(m, @) dG = f k/‘f (0, ¢) | cos ¢ | do dwn—1.

"7 dwp—

For instance, if f(a, ¢) = 1, the integral of [ cos ¢ | dwa—1 gives
a half of the projection of the (n—1)-dimensional unit sphere upon
a diametral plane; consequently we get

(3.2) fde=x,._2F

where xn—2 is given by (1.1) and m denotes the numberofintersection
points of G and S*~'. The integral is extended over all geodesics
which intersect S*~! and F represents the area of S*~.

4. Convex domains

We shall say that a simple closed hypersurface S"™! is convex
when any geodesic which intersects it has either two points or a
whole arc in common with 8*7'. In this case, if S"™! hasa finite
area F, the measure of the geodesics which have a common arc
with 87! is zero and consequently (3.2) gives: the measure of the
geodesics culling a convex hypersurface of area F is equal to % Xn—2F.

A domain @ in our Riemannian space will be said to be con-
vex when the following three properties are satisfied: 1. It is
bounded by a closed convex hypersurface; 2. It is homeomorphic
to a (n—1)-dimensional sphere; 3. Every geodesic with a point P
interior to @ can be prolonged from P in both senses to points
outside “Q.

Let S*7! be a hypersurface of area F contained in the interior
of a convex domain Q;let F, be the area of the boundary S,* ! of
Q. According to the foregoing condition 3 every geodesic which
intersects S* ™! will also intersect S,*~!. Consequently (3.2) gives the
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MEASURE OF SET8 OF GEODESICS 5

following mean value for the number of intersection points of
S*~! and all geodesics which cut S.°7!

(4.1) mt = [ m dG/ f dG = 2 FIF,

As an immediate consequence we have the theorem

Given a hypersurface of area F contained inside a convex domain
bounded by a hypersurface of area F,, there exist geodesic lines which
intersect S*~' in a number of points =2 F|F,.

Exactly the same method applied to (3.1), yields the more ge-
neral theorem:

Given a hypersurface S* ! contained inside a convex domain bound-
ed by a hypersurface of area F, and an integrable function f (o, ¢)
depending upon the points P (o) of S" "L und upon the angles ¢ around
the normal to S"! at P, there exist geodesic lines G for whose inter-
section points P; = P (0:) (i = 1,2, ..., m) with 8*7! the relation

(1.2) gf(a.- , i) = — 2 f ff (o, ¢)! cose |do dwn—1
1 Xn~2F,
Sn—'l %wn""l

holds, where @; is the angle at P; between G and the normal to 8",

5. Sets of geodesic segments
Let ¢t be the arc length on the geodesic G. From (2.7) we deduce
(5.1 [dGdt] = | cos ¢ | [dwp—1do dt ].

The product | cos ¢ | dt equals the projection of the arc element
dt upon the normal to the hypersurface 8*~! at the point P. Con-
sequently |cos ¢ | do dt represents the element of volume dP of
the given Riemannian space at P. Consequently (5.1) may be
written in the form

{5.2) [dG dt] = [dP dwn—1].

An oriented segment S of geodesic can be determined either by
G, t (@ = geodesic which contains S, ¢ = abscissa on G of the origin
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of S) or by P, w,—1 (P =origin of S, w,—; =point on the unit sphere
which gives the direction of S). The two equivalent differential
forms (5.2) may therefore be taken as density for sets of segments
of geodesic lines.

Let us consider the measure of the set of oriented segments S
with the origin inside a fixed domain D. The integral of the left
hand side of (5.2) gives 2 fodG where o denotes the lenght of the
arc of G which lies inside D (the factor 2 appears as a consequence
that dG means the density for non-oriented geodesic lines). The
integral of the right side of (5.2) is equal to w,—V, where V is the
volume of D.  Consequently we have the following integral formula

(5.3) fa'dG =4w.—V

which for n = 2, 3 generalizes well known results of the integral
geometry of the Euclidean spaces. :

6. An integral formula for convex bodies in spaces of
constant curvature

Let R, be now a Riemannian space of constant curvature K.
With respect to a system of polar coordinates it is known that the
clement of length can be written in the form [4, p. 240 ],

WK,
©.1) ds? = dp? + 5'3"—1(‘/—‘-’ AN
where p denotes the geodesic distance from a fixed point (origin
of coordinates) and d\.—) represents the element of length of the

(n—1)-dimensional unit sphere. The element of volume will take
the form

- sen""\/l_(p

(6' 2) P K(n =12

[dp dwn—1]

where dwn—;denotes the element of area on the (n—1)-dimensional
unit sphere.

SUMMA BRASILIENSIS MATHEMATICAE, vol. 8, faso. 1, 19562



MEASURE OF BETS OF GEODESICS 7

Let P,, P2 be two points in B, and let G be the geodesic whicn
unites them. Let p;, p2 be the abscissas on G of P, and Py, With
respect to a system of geodesic polar coordinates with the origin
at P;, the element of volume dP; has the form

sen"_’}/‘j(_ | p2—pl
Koz

(63) abP,; = [(ng dwy, —1 ] .

By exterior multiplication by dP; we have in consequence of
(5.2)

sin® —l\/i Ipz —'p1]
K(n -12

(6.4) [dP; dP; ] = [dp1 dps dG ).

This formula was given following different way by Haimo-
vict [6].

Let us consider the case n = 3. If Q is a convex domain of
volume 'V and we consider all the pairs of points Py, P, inside @,
the integral of the left side of (6.4) is equal to V2. If ¢ denotes
the length of the arc of G which lies inside Q, by calculating the
integral of the right side, we have

a 4
ffsinz\/l?lpz — p1 | dpadp, = % (02 - % sin’\/—ka)
Hence we have the integral formula

(6.5) —11(— f (02 - —}(—sinzx/l_(— a)dG =2V

where the integral is extended over all the geodesics which inter-
sect Q.

For the elliptic space (K = 1) this formula reduces to
(6.6) f (02 — sin%20) dG = 2 V2,
and for the hyperbolic space (K = — 1)
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6.7) f(sh"o' —a?)dG@ =2V2,

For the Fuclidean space (K = 0) we observe that

ETO—IE‘f(”a - -——(\/K ")/K . ) )dG = ——fc"dG

and consequently we have

(6.8) f o'dG =6 V2,

which is a well known formula [1, p. 77].
7. Integral formulas for convex bodies in the elliptic space

In the elliptic n-dimensional space all geodesics are closed and
have the finite length w. The hyperplanes have finite area
jwa—1. Since any geodesic intersects a fixed hyperplane in one
and only one point, formula (3.2) gives the measure of the set of
all geodesics of the n-dimensional elliptic space:

(7.1) fdG =} Xn—2 Wn—1.

Let @ be a convex body of area F and volume V and let us con-
sider the set of geodesic segments of length m which intersect Q.
The integral of the left side of (5.2) extended over this set is

and the integral of the right side of (5.2) is

(7.3) fdew,.—l =4w,— V +deP

where Q denotes the angle under which @ is seen from P (P ex-
terior to @). From (7.2) and (7.3) we deduce

(7.4) fQ dP =} xn—2 F — Y wn—1 V.
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)

For instance for n = 2 we get the known formula (8],

(7.5) /QdP=7rL—1rF

where L denotes the length of @ and F its area.
For » = 3 we have

(7.6) deP=}7r2F-21rV.

In the elliptic space to each integral formula referring to convex
bodies corresponds another one by “duality’”’. For the sake of
simplicity we shall consider the case n = 3; the case n = 2 was
already considered in [8].

Let M, F, V be the integrated mean curvature, area and volume
of a given convex body Q. For the dual conex body Q* it is known
that we have

7.7 F*=4n—F, M*=M , V*=n2-M—-V.

By duality to each straight line G corresponds another straight
line G* and hence, having into account (7.7), the formula (5.3) writes

f(1r ~ oM dG* = 27 (w2 — M* — V¥

where ¢* denotes the angle between the two support planes to @
through G* and the integral is extended over all G* exterior to Q.
Having into account (7.1) and (3.2), and by replacing G* by G, we
have the integral formula

(7.8) /cpdG=27r(M+V)—§1r’F

which has no analogous in the Euclidean geometry. .
Let us now consider the formula (6.6). Applied to the dua
convex body @* we have

'/[(1r — @' — sin? @* | dG* = 2 (w3 — M* ~ V*)?
from which and (7.8), (7.1), (3.2) it follows that
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(7.9 f(gr" —sin2)dG =2(M 4 V)2 — } n*F

where, as in (7.8), ¢ denotes the angle between the two planes of
support through @ and the integral is extended over all G exterior

to Q.
For the elliptic space of curvature K = 1/R? the formula (7.9)
becomes

2
f(¢2—~nn"’¢)—~*—2( + I;/") — 3 II;

and by R — «, after multiplication by R2, we get

f(ﬂoz—svnz‘ﬁ)d@ =2M! = }=F

which is the well known formula due to HErGLoTz which corres-
ponds to (7.9) for the 3-dimensional Euclidean space (1, p. 79,
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