L. A. SANTALÓ

[Reprinted from Izv. Akad. Nauk Armiansk. S.S.S.R., 5 (1970), 286-295.]

We divide this exposition into two parts. Section 3.1.1 refers to the mean value of the Euler-Poincaré characteristic of the intersection of two convex hypersurfaces in E_4 . Section 3.1.2 deals with the definition of qth total absolute curvatures of a compact *n*-dimensional variety imbedded in Euclidean space of n + N dimensions, extending some results given in [10].

3.1.1 ON CONVEX BODIES IN E4

Introduction

Let K be a convex body in 4-dimensional Euclidean space E_4 and let W_i (i = 0, 1, 2, 3, 4) be its Minkowski *Quermass integral* (see for instance Bonnesen-Fenchel [1]). Recall that

(1)
$$\begin{cases} W_0 = V = \text{volume of } K, \\ 4W_1 = F = \text{area of } \partial K, \\ W_4 = \pi^2/2 \end{cases}$$

and, if K has sufficiently smooth boundary, we have also

$$\begin{cases}
4W_{\rm B} = M_{\rm I} = \text{first mean curvature} = \frac{1}{3} \int_{\partial K} \left(\frac{1}{R_{\rm I}} + \frac{1}{R_{\rm B}} + \frac{1}{R_{\rm O}}\right) d\sigma, \\
4W_{\rm B} = M_{\rm B} = \text{second mean curvature} = \frac{1}{3} \int_{\partial K} \left(\frac{1}{R_{\rm I}R_{\rm B}} + \frac{1}{R_{\rm I}R_{\rm O}} + \frac{1}{R_{\rm B}R_{\rm O}}\right) d\sigma, \\
(2)
\end{cases}$$

where R_i are the principal radii of curvature and $d\sigma$ is the element of area of ∂K .

For instance, if K = sphere of radius r, we have

(3)
$$V = \frac{1}{2}\pi^2 r^4$$
, $F = 2\pi^2 r^2$, $M_1 = 2\pi^2 r^2$, $M_2 = 2\pi^2 r$

We will use throughout the invariants V, F, M_1, M_3 because they have a more geometrical meaning; however, we do not assume smoothness of ∂K , so that as definition of M_1, M_3 we take $M_1 = 4W_3, M_3 = 4W_3$.

The invariants V, F, M_1, M_3 are not independent. They are related by certain inequalities which may be written in the following symmetrical form (following Hadwiger [6]).

(4)
$$W_{\alpha}^{\beta-\gamma}W_{\gamma}^{-\alpha}W_{\gamma}^{\alpha-\beta} \ge 1, \quad 0 \le \alpha \le \beta \le \gamma \le 4.$$

In explicit form and using the invariants V, F, M_1, M_2 the inequalities (4) give the following non-independent inequalities

(5) $\begin{cases} F^{1} \ge 4VM_{1}, \quad F^{3} \ge 16V^{3}M_{2}, \quad F^{4} \ge 128\pi^{3}V^{3}, \\ M_{1}^{3} \ge 4VM_{2}, \quad M_{1}^{3} \ge 2\pi^{3}V, \quad M_{2}^{4} \ge 32\pi^{4}V, \\ M_{1}^{3} \ge FM_{2}, \quad M_{1}^{3} \ge 2\pi^{3}F^{3}, \quad M_{2}^{4} \ge 4\pi^{4}F, \\ M_{2}^{3} \ge 2\pi^{2}M_{1}. \end{cases}$

We will represent throughout the paper by O_i the volume of the *i*-dimensional unit sphere, that is

(6)
$$O_i = \frac{2\pi^{(i+1)/3}}{\Gamma(\frac{1}{2}[i+1])};$$

for instance,

(7)
$$O_0 = 2$$
, $O_1 = 2\pi$, $O_2 = 4\pi$, $O_3 = 2\pi^3$, $O_4 = \frac{2}{3}\pi^3$, $O_5 = \pi^3$.

Mean value of $\chi(\partial K \cap g \partial K)$

Let G be the group of isometries of E_4 . For any $g \in G$ we represent by $g \partial K$ the image of ∂K under the isometry g. Let dg denote the invariant volume element of G (- kinematic density for E_4). Assume the convex body K fixed and consider the intersections $\partial K \cap g \partial K$, $g \in G$. Then, Federer [5] and Chern [2] have proved the following integral formula

(8)
$$\int_{G} \chi(\partial K \cap g \,\partial K) \, dg = 64\pi^2 F M_p,$$

where $\chi(\partial K \cap g \partial K)$ denotes the Euler-Poincaré characteristic of the surface $\partial K \cap g \partial K$.

On the other hand, the so-called fundamental kinematic formula of integral geometry gives

(9)
$$\int_{K \cap g K \neq 0} dg = 8\pi^2 (4\pi^3 V + 2FM_2 + \frac{3}{2}M_1^3).$$

Therefore the expected value of $\chi(\partial K \cap g \partial K)$ is

(10)
$$\mathbf{E}(\chi(\partial K \cap g \,\partial K)) = \frac{8FM_3}{4\pi^3 \,V + 2FM_3 + \frac{3}{2}M_1^3}.$$

Notice that, K being convex, the intersections $\partial K \cap g \partial K$ are closed orientable surfaces. Thus the possible values of χ are either $\chi = 2, 4, 6, ...$ or $\chi = 0, -2, -4, -5, ...$ If K is an Euclidean sphere, obviously we have $\mathbf{E}(\chi) = 2$.

Conjecture. For all convex sets K of $E_{\mathbf{k}}$ the inequality

(11)
$$\mathbf{E}(\chi(\partial K \cap g \, \partial K)) \leq 2$$

holds good, with equality for the Euclidean sphere.

Putting

(12)
$$\Delta = 8\pi^{2} V + 3M_{1}^{2} - 4FM_{2}$$

the conjecture is equivalent to $\Delta \ge 0$. For the Euclidean sphere, according to equations (3) we have $\Delta = 0$.

In support of this conjecture we will prove it for rectangular parallelepipeds. Let a, b, c, d be the sides of a rectangular parallelepiped in E_4 and assume

$$(13) a \leq b \leq c \leq d.$$

It is known that (Hadwiger [6])

$$V = abcd$$
, $F = 2(abc + abd + acd + bcd)$,

$$M_1 = \frac{1}{2}\pi(ab+ac+ad+bc+bd+cd), \quad M_2 = \frac{1}{2}\pi(a+b+c+d).$$

† H. Hadwiger (personal communication to the author) has shown that the conjecture is not true. The counter-example is a 4-dimensional right cylinder with a 3-dimensional solid unit sphere as section and altitude equal to 1

$$(V = 4\pi/3, F = 20\pi/3, M_1 = (4/3)\pi (\pi + 2), M_2 = 20\pi/3).$$

Another counter-example is the 3-dimensional solid sphere considered as a flattened convex body of E_4 (V = 0, $F = 3\pi/3$, $M_1 = 4\pi^2/3$, $M_2 = 16\pi/3$, assuming the radius r = 1).

With these values we verify the identity

$$\begin{aligned} \frac{3}{4\pi} \Delta &= (4-\pi) \left[a^{2} c^{2} + a^{2} (c-b)^{2} + b^{2} (c-a)^{2} \right. \\ &+ a^{2} (d-b)^{2} + c^{2} (d-a)^{2} + b^{2} (d-c)^{2} + c^{2} (d-b)^{2} \right] \\ &+ (18\pi - 56) abcd + (4\pi - 12) (a^{2} b^{2} + a^{2} c^{2} + b^{2} c^{2}) \\ &+ (8 - 2\pi) \left[(b-a) acd + (c-b) abd + (d-c) acb \right] \\ &+ (4-\pi) d^{2} \left[(2A^{2} - B^{2}) (a^{2} + b^{2}) + (Ac - Ba)^{2} + (Ac - Bb)^{2} \right], \end{aligned}$$

where $A^{2} = (3\pi - 8)/(8 - 2\pi), B^{2} = (8 - 2\pi)/(3\pi - 8).$

Since all terms are positive, we have $\Delta > 0$.

For an ellipsoid of revolution whose semiaxes are $a, a, a, \lambda a$ we have (Hadwiger [6])

(14)
$$\begin{cases} V = (\frac{1}{2}\pi) \lambda a^{4}, \quad F = 2\pi^{3} \lambda^{3} a^{2} F(\frac{5}{2}, \frac{1}{2}, 2; 1 - \lambda^{3}), \\ M_{1} = 2\pi^{3} \lambda^{3} a^{3} F(\frac{5}{2}, 1, 2; 1 - \lambda^{3}), \\ M_{2} = 2\pi^{3} \lambda^{4} a F(\frac{5}{2}, \frac{3}{2}, 2; 1 - \lambda^{3}), \end{cases}$$

where F denotes the hypergeometric function. In this case the conjecture becomes

 $(15) 1+3\lambda^5 F_1^9-4\lambda^5 F_4 F_4 \ge 0,$

where

$$\begin{split} F_{\frac{1}{2}} &= F(\frac{4}{2}, \frac{1}{2}, 2; 1 - \lambda^{3}), \\ F_{1} &= F(\frac{4}{2}, 1, 2; 1 - \lambda^{3}), \\ F_{\frac{1}{2}} &= F(\frac{4}{2}, \frac{3}{2}, 2; 1 - \lambda^{3}). \end{split}$$

I do not know if the inequality (15) holds for all values of λ .

3.1.2 TOTAL ABSOLUTE CURVATURES OF COMPACT MANIFOLDS IMMERSED IN EUCLIDEAN SPACE

Introduction

In this section we extend and complete the contents of [10]. We shall first state some known formulae which will be used in the sequel.

Let L_h be an *h*-dimensional linear subspace in the (n+N)-dimensional Euclidean space E_{n+N} . We will call it, simply, an *h*-space. Let $L_h(O)$ be an *h*-space in E_{n+N} through a fixed point O. The set of all oriented $L_h(O)$ constitute the Grassman manifold $G_{h,n+N-h}$. We shall represent by $dL_h(O)$ the element of volume of $G_{h,n+N-h}$, which is the same thing as the

density for oriented *h*-spaces through O. The expression of $dL_k(O)$ is well known, but we will recall it briefly for completeness (see [9], [2]).

Let $(O; e_1, e_2, ..., e_{n+N})$ be an orthonormal frame in E_{n+N} of origin O. In the space of all orthonormal frames of origin O we define the differential forms

(16)
$$\omega_{im} = -\omega_{mi} = e_m de_i$$

Assuming $L_k(O)$ spanned by the unit vectors e_1, e_2, \dots, e_k , then

(17)
$$dL_k(O) = \Lambda \omega_{im},$$

where the right-hand side is the exterior product of the forms ω_{im} over the range of indices

$$i = 1, 2, ..., h; m = h+1, h+2, ..., n+N.$$

The (n+N-h)-space $L_{n+N-h}(O)$ orthogonal to $L_h(O)$ is spanned by e_{h+1}, \ldots, e_{n+N} and equations (2) give the duality

(18)
$$dL_{\lambda}(O) = dL_{n+N-\lambda}(O).$$

The measure of the set of all oriented $L_{\lambda}(O)$ (= volume of the Grassman manifold $G_{\lambda,n+N-\lambda}$) may be computed directly from equations (2) (see [9]), or applying the result that it is the quotient space

$$SO(n+N)/SO(h) \times SO(n+N-h)$$

(see [2]). The result is

(19)
$$\int_{G_{h,n+B-h}} dL_h(O) = \frac{O_{n+N-1}O_{n+N-1}\dots O_{n+N-h}}{O_1O_1\dots O_{h-1}}$$

$$=\frac{O_{\mathbf{k}}O_{\mathbf{k}+1}\dots O_{\mathbf{n}+N-1}}{O_{\mathbf{1}}O_{\mathbf{2}}\dots O_{\mathbf{n}+N-k-1}}$$

where O_i is the area of the *i*-dimensional unit sphere (equation (6)).

Another known integral formula which we will use is the following.

Consider the unit sphere \sum_{n+N-1} of dimension n+N-1 of centre O. Let V^o be an s-dimensional variety in \sum_{n+N-1} . Let $\mu_{s+h-n-N}(V^o \cap L_h)$ be the (s+h-n-N)-dimensional measure of the variety $V^o \cap L_h(O)$ of dimension s+h-(n+N) and let $\mu_o(V^o)$ be the s-dimensional measure of V^o (all these measures considered as measures of subvarieties of the Euclidean space E_{n+N}). Then

(20)
$$\begin{aligned} & \int_{G_{h,n+H-h}}^{\mu_{g+h-n-N}(V^{g} \cap L_{h}(O)) dL_{h}(O)} \\ &= \frac{O_{n+N-h}O_{n+N-h+1} \dots O_{n+N-1}O_{n+N-h}}{O_{1}O_{2} \dots O_{h-1}O_{n}} \mu_{g}(V^{g}). \end{aligned}$$

Note that this formula assumes the *h*-spaces L_h oriented (see [8]). In particular, if s = 1 and h = n + N - 1, that is, for a curve V^1 of length U, we have

(21)
$$\int_{G_{n+N-1,1}} v dL_{n+N-1}(O) = \frac{2O_{n+N-1}}{O_1} U,$$

where v is the number of points of the intersection $V^1 \cap L_{n+N-1}(O)$.

Definitions

Let X^n be a compact *n*-dimensional differentiable manifold (without boundary) of class C^{∞} in E_{n+N} . To each point $p \in X^n$ we attach the *p*-space $T^{(q)}(p)$ spanned by the vectors

(22)
$$\frac{\partial}{\partial x_1}, ..., \frac{\partial}{\partial x_n}; \frac{\partial^a}{\partial x_1^a}, ..., \frac{\partial^a}{\partial x_n^a}; ...; \frac{\partial^a}{\partial x_n^q}, ..., \frac{\partial^a}{\partial x_n^q}$$

which we will call the qth tangent fibre over p. Its dimension is

(23)
$$\rho(n,q) = \sum_{i=1}^{q} \binom{n+i-1}{i}.$$

Assuming

(24)
$$1 \le r \le n + N - 1, \quad \rho \le n + N - 1,$$

we define the rth total absolute curvature of order q of X^* as follows.

(a) Case $1 \le r \le \rho$. Let O be a fixed point of E_{n+N} and consider an (n+N-r)-space $L_{n+N-r}(O)$. Let Γ_r be the set of all r-spaces L_r of E_{n+N} which are contained in some of the fibres $T^{(q)}(p)$, $p \in X^n$, pass through p, and are orthogonal to $L_{n+N-r}(O)$. The intersection $\Gamma_r \cap L_{n+N-r}(O)$ will be a compact variety in $L_{n+N-r}(O)$ whose dimension δ we shall compute in the next section. Let $\mu(\Gamma_r \cap L_{n+N-r}(O))$ be the measure of this variety as subvariety of the Euclidean space $L_{n+N-r}(O)$; if $\delta = 0$, then μ means the number of intersection points of Γ_r and $L_{n+N-r}(O)$.

Then we define the *r*th total absolute curvature of order *q* of $X^n \subset E_{n+N}$ as the mean value of the measures μ for all $L_{n+N-r}(O)$, that is, according to equality (19)

$$K_{r,N}^{(q)}(X^{*}) = \frac{O_1 O_2 \dots O_{n+N-r-1}}{O_r O_{r+1} \dots O_{n+N-1}} \int_{G_{n+R-r,r}} \mu(\Gamma_r \cap L_{n+N-r}(O)) \, dL_{n+N-r}(O).$$
(25)

The coefficient of the right-hand side may be replaced by

(b) Case $\rho \leq r \leq n+N-1$. Instead of the set of L_r , which are contained in some $T^{(q)}(p)$ we consider now the set of L_r , which contain some $T^{(q)}(p)$, $p \in X^n$, and are orthogonal to $L_{n+N-r}(O)$. As before we represent this set by Γ_r , and the *r*th total absolute curvature of order q of $X^n \subseteq E_{n+N}$ is defined by the same mean value (25).

Properties

We proceed now to compute the dimension of $\Gamma_r \cap L_{n+N-r}(O)$.

(a) Case $1 \le r \le \rho$. The set of all $L_r \subseteq E_{n+N}$ is the Grassman manifold $G_{r+1,n+N-r}$ whose dimension is (r+1)(n+N-r). The set of all L_r which are contained in $T^{(q)}(p)$ and pass through p is the Grassman manifold $G_{r,\rho-r}$ of dimension $r(\rho-r)$; therefore the set of all L_r which are contained in some $T^{(q)}(p)$, $p \in X^n$, has dimension $r(\rho-r)+n$. On the other hand, the set of all $L_r \subseteq E_{n+N}$ which are orthogonal to $L_{n+N-r}(O)$ has dimension n+N-r. Consequently, the intersection of both sets, as sets of points of $G_{r+1,n+N-r}$ has dimension

$$r(\rho - r) + n + n + N - r - (r + 1)(n + N - r) = r\rho + n - r(n + N).$$

Since to each L_r orthogonal to $L_{n+N-r}(O)$ corresponds one and only one intersection point with this linear space, the preceding dimension coincides with the dimension δ of $\Gamma_r \cap L_{n+N-r}$, that is,

$$\delta = \dim \left(\Gamma_r \cap L_{n+N-r}(O) \right) = r\rho + n - r(n+N).$$

Hence, in order that $K_{r,s}^{(q)}(X^n) \neq 0$, it is necessary and sufficient that

$$(26) r\rho+n \ge r(n+N).$$

(b) Case $\rho \le r \le n+N-1$. The set of all $L_r \subseteq E_{n+N}$ which contain a fixed L_ρ , constitute the Grassman manifold $G_{r+\rho,n+N-r}$ and therefore the dimension of the set of all L_r which contain some $T^{(q)}(p)$, $p \in X^n$, is $(r-\rho)(n+N-r)+n$. The remaining dimensions are the same as in the case (a), so that the dimension of the set of all L_r which contain some $T^{(q)}(p)$, $p \in X^n$, and are orthogonal to $L_{n+N-r}(O)$, is

$$(r-\rho)(n+N-r)+n+n+N-r-(r+1)(n+N-r) = r\rho+n-\rho(n+N),$$

that is,

$$\delta = \dim \left(\Gamma_r \cap L_{n+N-r}(O) \right) = \rho r + n - \rho(n+N).$$

In order that $K_{n}(X^{n}) \neq 0$, it is necessary and sufficient that (27) $\rho r + n \ge \rho(n + N)$.

Of course, to inequalities (26) and (27) we must add the relations (24).

Special Problems

The most interesting cases correspond to $\delta = 0$, for which the measure μ in equation (25) is a positive integer and the total absolute curvature is invariant under similitudes. In this case the set of points $p \in X^*$ for which L_r contains or is contained in $T^{(q)}(p)$ can be divided according to the index of p, and we get different curvatures in the style of those defined by Kuiper for the case q = 1, r = n + N - 1 [7]. We will not go into details here.

Examples

(1) Curves, n = 1. For n = 1 the condition (26) is

and since $\rho \leq N$ the only possibility is $\rho = N$, r = 1, which gives $\delta = 0$. The corresponding curvature $K_{1,N}^{(N)}(X^1)$ is

(28)
$$K_{L,N}^{(D)}(X^{1}) = \frac{1}{O_{N}} \int_{G_{H,1}} \nu_{1} dL_{N}(O),$$

where ν_1 is the number of lines in E_{n+N} orthogonal to $L_N(O)$ which are contained in some Nth tangent fibre of the curve X^1 . Notice that $G_{N,1}$ is the unit sphere Σ_N and $dL_N(O)$ is the element of area of this sphere in consequence of the duality (18). If $e_1, e_2, \ldots, e_{N+1}$ are the principal normals of X^1 then the formula (21) says that the right-hand side of equation (28) is equal to the length of the spherical curve $e_{N+1}(s)$ ($s = \operatorname{arc}$ length of X^1) up to the factor $1/\pi$. That is, if κ_N is the Nth curvature of X^1 (see, for instance, Eisenhart [4], p. 107) we have

(29)
$$K_{1,N}^{(N)}(X^1) = \frac{1}{\pi} \int_{X_1} |\kappa_N| ds.$$

For the case of curves in E_{p} , N = 2, κ_{N} is the torsion of the curve and $K_{1}(k)$ is up to the factor π^{-1} , the absolute total torsion of X^{1} .

The condition (27) gives $1 \ge \rho + \rho(N-r)$ and since $r \le N$, this condition implies $\rho = 1$, r = N. We have the curvature

(30)
$$K_{N,N}^{(1)}(X^1) = \frac{1}{O_N} \int_{G_{1,N}} \nu_N dL_1(O),$$

where ν_N is the number of hyperplanes L_N of E_{N+1} orthogonal to $L_1(O)$ which contain some tangent line of X^1 . The same formula (21) gives now that the right-hand side of equation (30) is equal to the length of the curve $e_1(s)$ (= spherical tangential image of X^1), up to the factor $1/\pi$. Therefore, if κ_1 is the first curvature of X^1 , equation (30) becomes

(31)
$$K_{N,N}^{(1)}(X^1) = \frac{1}{\pi} \int_{X^1} |\kappa_1| ds.$$

Notice that for each direction $L_1(O)$ there are at least two hyperplanes orthogonal to $L_1(O)$ which contain a tangent line of X^1 (the hyperplanes which separate the hyperplanes which have a common point with X^1 from those which do not). Therefore the mean value $K_{N,N}^{(1)}$ is ≥ 2 and equation (31) gives the classical Fenchel inequality

(32)
$$\int_{\mathbf{X}^1} |\kappa_1| \, ds \ge 2\pi.$$

If the curve X^1 has at least four hyperplanes orthogonal to an arbitrary direction $L_1(O)$ which contain a tangent line of X^1 (as it happens for instance for knotted curves in E_3), the mean value $K_{N,N}^{(1)}(X)$ will be ≥ 4 , and we have the Fary inequality

$$(33) \qquad \qquad \int_{\mathcal{X}^1} |\kappa_1| \, ds \ge 4\pi.$$

(2) Surfaces, n = 2.

(i) Total absolute curvatures of order 1. We have n = 2, $\rho = 2$ and condition (26) becomes $2 \ge rN$. Therefore the possible cases are r = 1, N = 1; r = 2, N = 1 and r = 1, N = 2. For $2 \le r \le N+1$, condition (27) gives $r \ge N+1$ and therefore the only possible case is r = N+1.

(a) Case r = 1, N = 1. Surfaces in E_3 . Taking into account that $G_{3,1}$ is the unit sphere Σ_3 , the curvature (25) is

(34)
$$K_{\mathbf{I},\mathbf{I}}^{(1)}(X^{*}) = \frac{1}{4\pi} \int_{\Sigma_{\mathbf{0}}} \lambda \, dL_{\mathbf{0}}(O),$$

where λ is the length of the curve in the plane $L_2(O)$ generated by the intersections of $L_2(O)$ with the lines of E_2 which are tangent to X^2 and are orthogonal to $L_2(O)$. If H denotes the mean curvature of X^2 and do denotes the element of area of X^2 , it is known that (34) is equivalent to the *total absolute mean curvature*

(35)
$$K_{1,1}^{(1)}(X^2) = \frac{1}{2} \int_{X^2} |H| d\sigma.$$

(b) Case r = 2, N = 1. Surface $X^2 \subseteq E_3$. The Grassman manifold $G_{1,2}$ is the unit sphere Σ_3 and equation (25) can be written

(36)
$$K_{s,1}^{(1)}(X^s) = \frac{1}{4\pi} \int_{\Sigma_s} v_s \, dL_1(O),$$

where ν_3 is the number of planes in E_3 which are tangent to X^2 and are orthogonal to the line $L_1(O)$. If K denotes the Gaussian curvature of X^2 ,

since $dL_1(O)$ is the element of area on Σ_2 , it is easy to see that equation (36) is equivalent, up to a constant factor, to the *total absolute Gaussian curvature* of X^2 , that is,

(37)
$$K_{\underline{s},1}^{(1)}(X^{\underline{s}}) = \frac{1}{2\pi} \int_{X^{\underline{s}}} |K| \, d\sigma.$$

(c) Case r = 1, N = 2. Surfaces $X^2 \subseteq E_4$. In this case, writing $\Sigma_2 =$ unit 3-dimensional sphere, instead of $G_{2,1}$, we have

(38)
$$K_{1,\mathbf{s}}^{(1)}(X^{\mathbf{s}}) = \frac{1}{2\pi^{\mathbf{s}}} \int_{\Sigma_{\mathbf{s}}} \nu_1 dL_{\mathbf{s}}(O),$$

where ν_1 is the number of tangent lines to X^3 which are orthogonal to the hyperplane $L_3(O)$. The properties of this total absolute curvature seem not to be known. A geometrical interpretation was given in [10].

(d) Case r = N+1. Surfaces $X^2 \subseteq E_{N+2}$. According to (25) we have the following curvature

(39)
$$K_{N+1,N}^{(1)}(X^{s}) = \frac{1}{O_{N+1}} \int_{\Sigma_{s}} \nu_{N+1} dL_{1}(O),$$

where ν_{N+1} is the number of hyperplanes of E_{N+8} which are tangent to X^3 and are orthogonal to the line $L_1(O)$ and Σ_N denotes the N-dimensional unit sphere. Up to a constant factor this curvature coincides with the *curvature of Chern-Lashof* [3]. Since obviously $\nu_{N+1} > 2$ we have the inequality $K_{N+1,N}^{(1)} > 2$, with the equality sign only if X^3 is a convex surface contained in a linear subspace L_8 of E_4 .

For N = 2, X^{2} is a surface imbedded in E_{4} and the curvature (39) is a kind of dual of the curvature (38) (see [10]).

(ii) Total absolute curvatures of order q = 2. We have n = 2, $\rho = 5$ and the inequalities (26) and (27) say that the only possible cases are: (a) r = 1, N = 4; (b) r = 2, N = 4; (c) r = 1, N = 5.

(a) Case r = 1, N = 4. Surface X^{2} in E_{6} . The Grassman manifold $G_{5,1}$ is the unit sphere Σ_{5} and equation (25) can be written

(40)
$$K_{1,4}^{(3)}(X^{3}) = \frac{1}{O_{5}} \int_{\Sigma_{4}} \lambda \, dL_{5}(O),$$

where λ is the length of the curve in $L_s(O)$ generated by the intersections of $L_s(O)$ with the lines of E_s which are orthogonal to $L_s(O)$ and belong to some of the second tangent fibres of X^s .

(b) Case r = 2, N = 4. Surface X^{2} in E_{0} . We have

(41)
$$K_{\mathbf{i},\mathbf{i}}^{(\mathbf{i})}(X^{\mathbf{i}}) = \frac{O_1}{O_4 O_5} \int_{G_{\mathbf{i},\mathbf{i}}} \nu_{\mathbf{i}} dL_{\mathbf{i}}(O),$$

where ν_3 is the number of 2-spaces of E_6 which are orthogonal to $L_6(O)$ and are contained in some second tangent fibre of X^3 .

(c) Case r = 1, N = 5. Surfaces X^2 in E_2 .

We have

(42)
$$K_{1,\delta}^{(4)}(X^4) = \frac{1}{O_6} \int_{\Sigma_6} \nu_1 dL_6(O),$$

where ν_1 is the number of lines of E_7 which are contained in some second tangent fibre of X^2 and are orthogonal to $L_s(O)$.

The expression of these absolute total curvatures of order 2 by means of differential invariants of X^3 is not known.

REFERENCES

- 1. T. Bonnesen and W. Fenchel, Theorie der konvexen Körper, Erg. der Mathematik, Berlin (1934).
- S. S. Chern, "On the kinematic formula in integral geometry, J. Math. Mechanics, 16 (1966), 101-118.
- S. S. Chern and R. K. Lashof, "On the total curvature of immersed manifolds", Am. J. Math. 79 (1957), 306-318.
- 4. L. P. Eisenhart, *Riemannian Geometry*, Princeton University Press, Princeton (1949).
- 5. H. Federer, "Curvature measures", Trans. Am. Math. Soc. 93 (1959), 418-491.
 - 6. H. Hadwiger, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Springer, Berlin (1957).
- 7. N. Kuiper, "Der Satz von Gauss-Bonnet für Abbildungen in E" und damit verwandte Probleme", Jahr. Deutsch. Math. Ver. 69 (1967), 77-88.
- L. A. Santaló, "Géometría integral en espacios de curvatura constante", Publicaciones Com. Energia Atómica, Serie Matem. Buenos Aires (1952).
- ----, "Sur la mesure des espaces linéaires qui coupent un corps convexe et problèmes que s'y rattachent", Colloque sur les Questions de Réalité en Géométrie, Liege, (1955), 177-190.
- ----, "Curvaturas absolutas totales de variedades contenidas en un espacio euclidiano", Coloquio de Geometria Diferencial, Santiago de Compostela (España) (1967), pp. 29-38.