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Mean Valúes and Curvatures 
L. A. SANTAtó 

[Reprinted from hv. Ákad. Nauk ArmUmsk. S.S.S.R., 5 (1970), 286-295.] 

We divide this expositíon into two parts. Section 3.1.1 refen to the mean 
valué of the Euler^Poincaré diaracteristíc of the intersection of two 
convex hypenurfaces in £4. Section 3.1.2 deals with the definition of ̂ th 
total absolute curvatures of a compact nnlimensional varíety imbedded in 
Eudidean spaoe ofn+jyr dimensions, extending some results given in [10]. 

3.1.1 ON CONVEX BODIES IN £« 

bitroáuetion 
Let JT be a convex body in 4-dimensional Eudidean spaoe £4 and let 
fV( (/ • 0,1,2,3,4) be its Minkowsid Quermass integral (see for instanoe 
Bonnesen-Fenchd [1]). Recali that 

( n;-K-volumeof / : , 

4fFi-F-aieaofdJt, 

and, if JT hM suflkiently smooth boundary, we have also 

4IPa - A^ •- fint mean curvature - T j (jT+jr+»")<''» 

^4Iíi - JMi - second mean curvature - 1 J J ^ + ¿ ^ + ¿ ^ ) * r . 

(2) 
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where /{«aie the principal radii of curvature and da is the element of aiea 
ofdK. 

For instanoe, ÜK" sphere of radius r, we have 

(3) K-K»^. J^-2ii*r», Mi-2ir«r«, M,-2iT«r. 
We will use throughout the invariants V,F,Mi,Mf because they have a 

more geometrícal meaning; however, we do not assume smootimess of 
dJC, 80 that as definition of Aíi.Af, we take M̂  - AW,, M, - AW^ 

The invariants V,F,Mi,Mg are not independent They are related by 
certain inequalities which may be written in the foUowing symmetrictü 
form (foUowing Hadwiger [6]). 
(4) wi-ywy*w^-P>\, o<«o<y<4. 

In explícit form and using the invariants V,F,Mi,Mt the inequalities 
(4) give the foUowing non-independent ineqiiaUties 

Í
<F»>4KMi, F*>16VM^ F«>128ir«F», 

Ml^AVMt, MJ>2w«K, ^t>32ii«K, 
Ml>FM^ Jff>2ir>F*. M\>Aii*F, 
Af|>2ir>A#i. 

We wUl lepresent throughout the paper by 0« the volxune of the 
/•dimensional unit sphere, that is 

for instanoe, 
(7) 0 , - 2 , Oi-2ir, Oa-4ir, 0,-2ir*, O^-fi*, 0 , -«». 

JI/M» ooüue o/^BKngBK) 
Let G be the group of isonietries of £4. For any geG we represent by 
gdK the image of BK under the isometry g. Let 4r denote the invarint 
volume dement of O ( - Idnematic drasity for £4). Assume the oonvex 
body K fixed tnd oonsider the interaectiont BKngBK, geG. Then, 
Federer [5] and C3iera [2] have proved the foUowing integral formula 

(8) (j({BKngBK)dg^eAii^FM^ 

Âwre xĈ JTnfdJT) denotes the Euler-Poincaré cfaaracteristic of the 
surface BKngBK. 
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On the other hand, the so-called fundamental kinematic formula of 

integral geometry gives 

(9) { dg" 8iT«(4ír« K+2fM,+|Jlf«). 

Therefore the expected value of y{dKngdK) is 

Notioe that, K bdng convex, the intenections dKngdK are dosed 
orientable surfaoes. Thus the possible vàlues of x are either x — 2,4,6,... 
or X ~ 0, - 2, — 4, - S,.... If AT is an EucUdean sphere, obviously we have 
E(x)-2. 

Omitetmrt, For all cmtvex sets Ko/Etthe biequaltíy 

(11) E(x{BKngdK))<2 

holds good, with equalityfor the Etielidem sphere.^ 

Putting 

(12) A-8»r»K+33fí-4fM, 

the coqjecture is equivalent to Á>0. For the EucUdean sphere, aocording 
to equations (3) we have A > 0. 

In support of this coqjecture we will prové it for rectangular paraUel-
epipeds. Let a, ¿, c, </ be the sides of a rectangular parallelepiped in £« and 
assume 

(13) a<b<eKd. 

It is known that (Hadwiger [6]) 

V-mtéed, F'>2(abc+íAd+acd+bcd), 

M^mlniflò+ae+ad+bc+bd+ed), Mt-^^a+b+c+d). 

t H. HadwifHr (jpctsoii·l comnmnieatioii to th* author) hu iliowa that the OOIK 
J«ctui« is not tnie. The coiiiiter«auiipto is a 4-dimeiisioiul ri^ cylindsr with a 
3«diiiMiisioiial sòlid unit tphera aa section and «Ititude eqti·l to 1 

(V m 4mli, P - 20ir/3. Mi - (4/3)fr(ir+2), V, - 20ir/3). 

Aaother ooaiit«r«aunple is the S-dimensioiuI soUd vhan oonsidsnd u a 
üattMwd ooBvex body of £« (K- 0. F - Sir/3. M^ » 4fr*̂ , Jtf, - l«ir/3. assmaiDt 
ths radios r <• I). 
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With these vàlues we verify the identity 

- i A - (4-ír) [a«c«+a»(c-6)»+6»(c-a)« 

+a^rf-fc)»+c«(rf-fl)»+6»(rf-c)«+<*(</-fc)«l 

+(18ir-56)a6c</+(4»r-12)(a*6«+<i«c«+o«c«) 

+(8-2ir) [(*-a)ac</+(c-6)cW+(rf-c)ccél 

+(4-»r)d»[(2i4»-^(a«+6«)+(i4c-Bfl)«+(i4c-B6)«l, 

where Á* - (3ir-8)/(8-2ir), B» - (8-2ír)/(3ir-8). 
Sinoe all terms are positive, we have A >0. 
For an ellipsoid of revolution whose semiaxes are a, a, a. Xa we have 

(Hadwiger [61) 

( K-(iir)Aa*, F-2iT«A«fl»f(f.i2;l-A«), 

(14) I Mi - 2w«A»a«F(i 1.2; 1-A«), 

(Aíi-2tr«A«flF(f.|.2;l-A«). 

where F denotes the hypergeometric function. In this case the coî jecture 
becomes 

(15) l + 3A»FÍ-4A»FjF,>0, 

where 
í '»-^(i i2; l~A«), 
Fi-iFX|.l,2;l-A«). 

^i -^ | . f .2; i -A«) . 

I do not know if the inequality (15) holds for all valúes of A. 

3.1.2 TOTAL ABSOLUTE CURVATURES OF COMPACT 
MANIFOLDS IMMERSED IN EUCLIDEAN SFACE 

Mroduction 
In this section we extend and complete the contenta of [10]. We shall first 
State some known fonnulae which wUl be used in the sequd. 

Let Lĵ  be an A-dimensional linear subspace in the (R+i\0-dimensional 
Eudidean space E^^. We will cali it, simply, an A-spaoe. Let L^O) be an 
A-space in E^n through a fixed point O. The set of all oriented Lf^ifl) 
constitute the Orassman manifold (7A.»+JV-»> ^® ^^^^ represent by 
dLĵ (0) the element of volume of Gĵ M-t-w-k* whidí is the same thing •• tte 
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density for oriented A-spaoes through O. The expression ofàL^iP) is well 
known, but we wUl itcall it briefly for completeness (see [9], pj). 

Let (O; ex,e^...,e^j^.s) be an orthononnal frame in E^^if of origin O. 
In the spaoe of all orthononnal frames of origin O we define the differentíal 
forms 
(16) «"ím--««K-*«.*<• 

Assuming LfJ(P) spanned by the unit vectors e^.e, e^, then 
(17) dL^iO) - M ^ , 
where the light-hand side is the exterior product of the forms Wf^ over 
the range of Índices 

/ -1 ,2 , . . . ,A; m-A+l ,*+2, . . . ,«+Ar, 
The {n+N-hyxpaat ¿M+Ar-k(0) orthogonal to ¿«(O) is spanned by 

fh+if —»*n+s <i°<l equations (2) give the duality 
(18) <ü'*(0)-áL^+^.*(0). 

The measure of the set of all oriented L^iO) (•• volume of the Orassoum 
manifold (7k,«+w-Jk) °"̂ y ^ computed directly from equations (2) (see 
[9]), or applying the result that it is the quotient spaoe 

SO(n+N)/SOih) X SOin+N-h) 
(see PD. The result is 

(19) f áL,(0)-2»±i£=^gt¿£=^:i2^ 

where Oi is the àrea of the dimensional unit sphere (equation (6)). 
Another known integral formula whidi we ̂  use is the following. 
Consider the unit sphere £»+jv_i of dimensión n+N-l of centre O. 

Let K* be an i-dimensional variety in ^^K-I- Let Mt+»-i»-iv(̂ *'̂ ĵk) be 
the (jr+A-n-.AO-<limensional measure of the variety VnL^Çp) of 
dimensión s+h-in+N) and let nJiV) be the i-dimensional measure of 
V (all these measures considered as measures of subvarieties of the 
Eudidean spaoe E^+s)' l ' b ^ 

í M^»_,-w(K*nLk(0))áL»(0) 

^^^ o^o,.,.o^o. '*·í^'>· 
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Note that this formula assumes the A-spaoes £,« oríented (see [8]). In 
particular, if j — 1 and h — n-¥N— 1, that is, for a curve V^ of length U, 
wehave 

(21) f vàL^^s-xm-^^^U, 

where v is the number of points of the intersection V^nL^¡f-i{0). 

D^initions 
Let JT*̂  be a compact rKÜmensional differentiable manifold (without 
boundary) of dass C* in Ef^if, To each point pGX* we attach the 
^spaoe r<*>(̂ ) spanned by the vectors 

d d d» d» a« a« 
^̂ ^ ^ i^' s:̂  ^'' "" 5Jf "s^' 
which we will call the 9th tangent fibre over p . Its dimensión is 

(23) P(».?)-Í('·"^Í"^). 

Assuming 
(24) U r < » + A r - 1 , pKn+N-l, 

we define the rth total absolute curvatyre of order 9 of JT* as follows. 

(a) Case 1 <r<p. Let O be a fixed point of E^^if and consider an 
(n+JV-r)-Bpaoe L^+jf^O). Let F, be the set of all r-spaces L, of E^+j, 
which are contained in some of the fibres T^^ip), peX*, pass throu^^ 
p , and are orthogonal to L^+n^O). The intersection T^nL^+jf^^O) will 
be a compact variety in L^^n^O) whose dimensión 8 we shall compute 
in the next section. Let /!(?, n L^n^oy) be the measure of this variety as 
subvariety of the Euclidean space L^¡fiXO)\ if 8 - 0̂  then ¡t means the 
number of intersection points of F,. and L^ji^Cf). 

Then we define the rth total absolute curvature of order 9 of AT** c £^^^ 
as the mean valué of the measures 11 for all L^+¡f^O\ that is, aooordiog 
to equality (19) 

(25) 
Tlw coefladent of the ii||itJuuid tide may be nplaoed by 
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Q>) Case pKrKn+N— 1. Instead of the set of L, which are eontttíned 
in some r«)(/>) we conúder now the set of L,. which cont<dn some 7<"(p), 
pe X*, and aie orthogonal to L^+s-ÁO). As before we represent this set 
by r , and the rth total abtolute curvature of order qoí X^c- £n+jv ú 
defined by the same mean valué (25). 

Propertíea 
We proceed now to compute the dimensión of TrC\L^tf-ÁP)' 

(a) Case í<r<p. The set of all I,, c ^̂ ^̂ y is the Grassman manifold 
Gr+u*+if-r whose dimensión is (r+l)(n+N-r). The set of all L, which 
are contained in T^'\p) and pass through p is the Qrassman manifold 
G,^^, of dimensión r(j>-r); therefore the set of all L, which are contained 
in some 7<<>(P)> P^X*, has dimensión r(p-r)+n. On the other hand, 
the set of all L, <= E,^^s which are orthogonal toL^+iv-rC^) ̂ ^ dimensión 
n+N—r. Consequently, the intersection of both sets, as sets of points of 
Gr+i.n+N-r> !»• dúnennon 

r(p-r)+n+n+iV-r-(r+l) («+Ar-r) - rp+»i-r(n+;V). 
Since to each L, orthogonal to L^jf^O) corresponds one and only 

one intersection point with this linear space, the preceding dimensión 
coincides with the dimensión 8 of r,n¿„^jy_^ that is, 

8 - dim(r,nI,»+jv_XO)) ~rp+n-r(n+N). 

Henee, in order that K¿^X*)^0, it is necessary and suffident that 

(26) rp+n>r{n+N). 

(f>) Case p<r<n+Ar-l . The set of all L,<^E^ii which contain a 
fixed Lp, oonstitute the Grassman manifold G,+^+t,-r <"^ therefore the 
dimeniion of the set of all L, which contain some T^*Kp), peX\ is 
(r-p)(,n+N-r)+n. The remaining dimensions are the same as in the 
case (a), so that the dimensión of the set of all L, which contain some 
7(t>(p), peX*, and are orthogonal to L^jf-^0), is 

{r-p){n+N-r)+n+n+N~r-{r+l){n+N-r)mrp+n-p(ft+N), 

thatit, 
8 - dim(r,nl,^+jv_^0)) -/>r+ii-/»(jf+jy0. 

In order that Ki¡^X*)^0, it is neoeiMiy and sulBdent that 

(27) pr+H^pOt+U). 
Of oonne, to inequalities (26) and (27) we múst add the relations (24). 
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The most interesting cases correspond to 8 — 0, for which the measure 
H in equatíon (25) is a positive integer and the total absolute curvature is 
invariant under similitudes. In this case the set of points peX* for which 
L, contains or is contained in r<'>(/>) can be divided according to the 
Índex of p, and we get different curvatures in the style of those defined by 
Kuiper for the case ^ « 1, r -i n+N-1 [7]. We will not go into detalls 
here. 

ExampUs 
(1) Curves, i t « 1. For n » 1 the condition (26) is 

l>r+riN-p) 
and since p<N the only possibility is p -• ̂ , r - 1, which gives S •- 0. 
The corresponding curvature K^^iX^) is 

(28) Ki^iX^)--^{ yidLj^O), 

where vi is the number of Unes in E^¡f orthogonal to Lfi(P) which are 
contained in some Mh tangent fibre of the curve X\ Notice that Gj/^ 
is the unit sphere ^¡f and dLmiP) is the element of àrea of this sphere in 
consequence of the duality (18). irei,e„ ...,es+i ^'^ ̂  principal normals 
of X^ then the formula (21) says that the right-hand side of equatíon (28) 
is equal to the length of the spherical curve e¡f+i(s) (x * arc Imgth of X*) 
up to the factor l/ir. That is, if itfi is the Níh curvature of X^ (see, for 
instance, Eisenhart [4], p. 107) we have 

(29) l^iX')'lj^Mds. 

For the cate of curves in JŜ  AT» 2, KĴ  is the torsión of the curve and 
K^ is up to the factor ir'S the tínobae total torskm of X^. 

The condition Ç27) gives 1 > p+p(Ar-r) and since r<AT, this condition 
implies p - 1 , r » /f. We have the curvature 

(30) Ki^^x^)"!-! vsdLm^ 

where v̂ ^ is the number of hyperplanes L¡t of Eif+i orthogonal to LJiO) 
which contain some tangent line of X\ The same formula (21) gives now 
that tiie ri^-hand side of equation (30) is equal to the length of the curve 
«i(i) ( - spherical tangential image of X^, up to the factor l/ir. Therefore, 
if «Cl is the first curvature of X\ equation (30) becomes 

(31) KÍ^M^^)~ljjK^\d,. 
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Notice that for each directíon LJP) there are at least two hyperplanes 
orthogonal to l^P) which cootain a tangent line of X^ (the hyperplanes 
which sepárate the hyperplanes which have a common point >with X^ 
from those which do not). Therefore the mean valué K)^^ is > 2 and 
equation (31) gives the classical FenChel inequality 

(32) ^jK^\ds>lii 

If the curve X'^ has at least four hyperplanes orthogonal to an arbitrary 
direction £i(0) which contain a tangent line of X^ (as it happens for 
instanoe for knotted curves in £^, the mean valué K^\J(X) will be >4, 
and we have the Fary inequality 

(33) ^jK^\da>\n. 

(2) Surfaces, n - 2. 

(0 Totei absobOe curvatures of order 1. We have n * 2, p « 2 and 
condition (26) becomes 2^rN. Therefore the possible cases are r - 1 , 
J V - 1 ; r - 2 , JV-1 a n d r - 1 , i ^ - 2 . For 2<r<iV+l , condition (27) 
gives r>N+1 and therefore the only possible case is r - N+1. 

(a) Case r - 1, ^ - 1. Surfaces in £ .̂ Taking into account that G|̂  is 
the unit sphere £(, the curvature (25) is 

(34) iS:íi»(Jr«)-¿j^AáL|(0). 

where A is the length of the curve in the plane L^O) generated by the 
intersectíons a( L4fil) with the Unes «tf E^ which are tangent to X* and 
are orthogonal to L^Cf). If H denotes the mean curvature of X* and da 
denotes the dement of àrea of X*, it is known that (34) is equivalent to 
the total absobite mean curvature 

(35) Kiam^ljjH\da. 

(6) Case r * 2, i^ - 1 . Surfaoe X* <= E^. The Orassman manifold Ĝ ^ 
is th» unit sphere £« and equation (25) can be written 

(3fi) Aa|(Jf«)-¿J^viáIa(0), 

!î iere v, is the number of planes in E^ which are tangent to X* and are 
orthogonal to tbe line £i(0). IfJC denotes the Qaussian curvature of X\ 
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sínoe dLi(0) is the element of àrea on £, , it is easy to see that equation 
(36) is equivalent, up to a constant factor, to the total absoMe Gaussian 
curvature of X*, that is, 

(37) K;i\X^^l^jjK\da. 

(c) Case r — 1, ^ — 2. Surfaces X* <= E^. In this case, writing £ , — unit 
3^mensional sphere, instead of G^, we have 

(38) KiSiX') - ¿ 5 \^xdL¿0), 

where vj is the number of tangent Unes to X* which are orthogonal to 
the hyperplane LJfi). The properties of this total absolute curvature 
seem not to be known. A geometrical interpretation was given in [10]. 

(<0 Case r«- N+1. Surfaces X* <= E^^^ According to (25) we have 
the following curvature 

(35) m^X'^'7r-{ ^s^x^iP), 

where v^+i is the number of hyperplanes of Ef,+t whidi are tangent to 
X* and are orthogonal to the line LiiO) and Sjy denotes the ^-dimensional 
unit sphere. Up to a constant factor this curvature coincides with the 
curvature of Chem-Lashof [3]. Sinoe obviously vif+i>2 we have the 
inequality K^ij/ > 2, with the equality s i ^ only if i'* is a convex surface 
contained in a linear subspace £« of £4. 

For N"!, X*i»A surface imbedded in £4 and the curvature (39) is a 
kind of dual of the curvature (38) (see [lOD. 

(//) Toted absolute curvatures oforder 9 •• 2. We have n •• 2, /i •• S and 
the inequalitiet (26) and (27) say that the only possible cases are: (a) r > 1, 
A r - 4 ; ( ¿ ) r - 2 , 7 ^ - 4 ; ( c ) r - 1 , i V - 5 . 

(a) Cose r « 1, TiT« 4. Surface X* in £«. The Orassman manifold G^^ 
is tlM unit sphere 2), and equation (25) can be written 

(40) jqj>(Jr«)-i-J^Aáí,(0), 

where A ia the length of the curve in £((0) generated by the intenectioas of 
£((0) with the lines of E^ which are orthogonal to L^O) and bdong to 
some of the second tangent fibres of X*. 

(b) Giwr-2,i^-4.SuifaoeJir>ia£;.Wehave 

(«) m'n-^J^^AíO). 
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where v, is the number of 2-8paces of £« which are orthogonal to LJfi) 
and are contained in some second tangent fibre of X*. 

(fi) Case r - 1, / / - 5. Surfaces X* in £ , . 

Wehave 

(42) Ki$iX*)~l.J^v,dUO), 

where v̂  is the number of Unes of £ , which are contained in some second 
tangent fibre of X* and are orthogonal to L¿0). 

The expression of these absolute total curvatures of order 2 by means 
of differential invariants of X* is not known. 
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