3.1

Mean Values and Curvatures
L. A. SANTALG
[Reprinted from Izv. Akad. Nauk Armiansk. S.S.S.R., S (1970), 286-295.]

We divide this exposition into two parts. Section 3.1.1 refers to the mean
value of the Euler-Poincaré characteristic of the intersection of two
convex hypersurfaces in E,. Section 3.1.2 deals with the definition of gth
total absolute curvatures of a compact n-dimensional variety imbedded in
Euclidean space of n+ N dimensions, extending some results given in [10].

311 ON CONVEX BODIES IN E,

Introduction

Let X be a convex body in 4-dimensional Euclidean space E, and let
W;(1=0,1,2,3,4) be its Minkowski Quermass integral (see for instance
Bonnesen-Fenchel [1]). Recall that

Wy = ¥ = volume of K,
(1) 4W, = F = area of oK,
W, = n3/2

and, if K has sufficiently smooth boundary, we have also

4W, = M, = first mean curvature -%Lx(%:*-%*’i)da’
| | 1 1 11
4W3 = M, = second mean curvature = 3 ax(ﬁ+ﬁ+§.—k'.)""’
(2) .

165




166 . Special Problems

where R are the principal radii of curvature and do is the element of area
of oK.
For instance, if X = sphere of radius r, we have

(3) V-*‘"’", F-Z".r', MI-Zﬂ'r‘, M'-Z’T"-

We will use throughout the invariants V, F, M;, M, because they have a
more geometrical meaning; however, we do not assume smoothness of
oK, so that as definition of M;, M, we take M, = 4, M, = 4W,.

The invariants V, F, M;, M, are not independent. They are related by
certain inequalities which may be written in the following symmetrical
form (following Hadwiger [6]).

()] whr Wi Wi#31, 0<agpLy<4.

In explicit form and using the invariants V, F,M;, M, the inequalities

(4) give the following non-independent inequalities -
F134VM,, F%>16V*M, F'3128z%V3,

M134VM,, M$52n'V, M{§3320%V,

MI>FM, M$32n'Ft, M}34n*F,

M}52+*M,.

We will represent throughout the paper by O; the volume of the

i-dimensional unit sphere, that is
2prit+1)/a
© Oy= r(_iT‘TH_D H
for instance,
(7) 0.-2, 01-2‘"', 0’-4’7, 0.-2‘"’, 0‘-""", 0.-#'.

®

Mean value of (0K ng oK)

Let G be the group of isometries of E,. For any g€ G we represent by
20K the image of JK under the isometry g. Let dg denote the invariant
volume element of G (= kinematic density for E,). Assume the convex
body K fixed and consider the intersections dKngdK, geG. Then,
Federer [5] and Chern [2] have proved the following integral formula

® f x(0Kng dK)dg = 64w FM,,

where x(0KngdK) denotes the Euler-Poincaré chmcumnc of the
surface dKng ok,
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On the other hand, the so-called fundamental kinematic formula of
integral geometry gives

® f dg = 8m¥(4n* V+2FM, + §MD).
ENgKw0
Therefore the expected value of x(0Kng oK) is
8FM,
(10) E(x(?KngoK)) = VT T T

Notice that, K being convex, the intersections dKngoK are closed
orientable surfaces. Thus the possible values of x are either y = 2,4,6, ...
or x =0, -2, —4, -5, .... If K is an Euclidean sphere, obviously we have

E(x) = 2.

Conjecture. For all convex sets K of E, the inequality

(11) E(x(0KngdK))<2

holds good, with equality for the Euclidean sphere.t
Putting

(12) A = 8m*V+3M}-4FM,

the conjecture is equivalent to A 3 0. For the Euclidean sphere, according
to equations (3) we have A = 0.

In support of this conjecture we will prove it for rectangular parallel-
epipeds. Let a, b, ¢, d be the sides of a rectangular parallelepiped in E, and
assume

a3 agbgc<gd.
It is known that (Hadwiger [6])
V = abed, F = 2(abc+abd+ acd+bed),
M, = §n(ab+ac+ad+bc+bd+cd), My =$n(a+b+c+d).

eommmie.ﬂontothtluthor)huuhmthtthom-

H. Hadwiger (personal
jmmhmtmmwunummph a 4-dimensional right cylinder with a
3-dimensional solid mitsphueuncdonmdddtudoequdtol

(V = 4[3, F = 20m[3, My = (43w (w +2), My = 20w/3).

Another counter-example is the 3-dimensional solid sphere considered as a
&tmdeomw;)bodydt.(l'-o.i-kﬂ.u,-«%,n.-lﬂrls.ammhc
Mmf-




168 Sptcial&ablcm
With these values we verify the identity
A= @-m) a4 ae—bP+ B —ap
+a¥d— b+ cXNd—a) + b¥d— )P+ cNd—- b))
+ (187 — 56) abed+ (4w~ 12) (@ B+ a3 P+ b2 )
+(8~27) [(b—a) acd+(c—~ b) abd + (d— c) acb)
+(4~ 7) P24~ B (a*+ b%) + (Ac— Ba)*+ (Ac— Bb)*),

where A* = (37— 8)/(8 —27), B = (8 — 27)/(3m —8).
Since all terms are positive, we have A >0,
For an ellipsoid of revolution whose semiaxes are a,a,a, \a we have

(Hadwiger [6])

Vu(in)dat, F=2rAa*F(§,1,2; 1-29),
(14) M, =202 A3a3F(§,1,2; 1-A9),

M, = 2n* XaF(},1,2; 1-29),

where F denotes the hypergeometric function. In this case the conjecture
becomes
15 1+3MF}~-4XF, F, 30,
where .
Fy=F(}.4.2; 1=,
Fy=FR§,1,2;1-0),
Fy=F§,§.2;1-29).
I do not know if the inequality (15) holds for all values of A.

3.1.2 TOTAL ABSOLUTE CURVATURES OF COMPACT
MANIFOLDS IMMERSED IN EUCLIDEAN SPACE

Introduction
In this section we extend and complete the contents of [10]. We shall first
state some known formulae which will be used in the sequel.

Let L, be an A-dimensional linear subspace in the (n+ N)-dimensional
Euclidean space E,,, y. We will call it, simply, an A-space. Let L,(O) be an
h-space in E,,y through a fixed point O. The set of all oriented L\(O)
constitute the Grassman manifold G,,.y-a. We shall represent by
dL,(O) the element of volume of G, . x—s, Which is the same thing as the
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density for oriented A-spaces through O. The expression of dL,(0) is well
known, but we will recall it briefly for completeness (see [9], [2].

Let (O; ;, €4, ..., €44n) be an orthonormal frame in E, .y of origin O.
In the space of all orthonormal frames of origin O we define the differential
forms

(16) Wiy ™= = Wpg ™= €y dE;.
Assuming Ly(O) spanned by the unit vectors e,, e, ..., ¢,, then
amn dL)(0) = Awy,,

where the right-hand side is the exterior product of the forms w,,, over
the range of indices
I=1,2,..,h; mm=htl,h+2,...,n+N.

The (n+ N-—h)-space L,,y_»(0) orthogonal to L,(O) is spanned by
€x+15 -+ €ns 80 equations (2) give the duality
a19) dL\(0) = dL,,5-x(0).

The measure of the set of all oriented L,(O) (= volume of the Grassman
manifold Gj,.y-») may be computed directly from equations (2) (see
[9D, or applying the result that it is the quotient space

SO(n+ N)/SO(h) x SO(n+ N—bh)
(see [2]). The result is

() o )
19 f dL(0) = ~BtN=1n+N-2 ntN-A
( ) ol.!+'-l h( ) 01 O. YY) ol-l

e O 0hi1 .- Onina
0,0;...Opyy-p-1’

where O, is the area of the /-dimensional unit sphere (equation (6)).

Another known integral formula which we will use is the following.

Consider the unit sphere £\ _, of dimension n+N—1 of centre O.
Let ¥* be an s-dimensional variety in X, v_,. Let g a-n-n(V*NLy) be
the (s+h—n—N)-dimensional measure of the variety V*nL,(0) of
dimension s+Ak—(n+N) and let u(V?) be the s-dimensional measure of
V* (all these measures considered as measures of subvarieties of the
Euclidean space E,,y). Then

[ PerasP LN dLy0)
[~ PTY 41

Opsna O .0 0
- o IEN=A st N-h41 84N~ Yato—n-N
(20) 0,0;...0p4 O, HelV).
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Note that this formula assumes the k-spaces L, oriented (see [8]). In
particular, if s = 1 and 4 = n4+ N—1, that is, for a curve V! of length U,
we have

@ [ ey =2y,

Gnin-12 0
where v is the number of points of the intersection VL, ,.x_4(0).
Definitions

Let X* be a compact n-dimensional differentiable manifold (without
boundary) of class C® in E,.y. To each point pe X* we attach the
p-space T9(p) spanned by the vectors

0 0 o * o ot
-(22) xl’""5x—,,; E""'?F,; v} ﬁ""'ﬁ'
which we will call the gth tangent fibre over p. Its dimension is
@) sma)= £ (")
Assuming
29 1€r<n+N-1, p<n+N-1,

we define the rth total absolute curvatyre of order ¢ of X as follows.

(@) Case 1<r<p. Let O be a fixed point of E, .y and consider an
(n+ N-r)-space L, . n.(0). Let T, be the set of all r-spaces L, of E, »
which are contained in some of the fibres T'9(p), pe X*, pass through
P, and are orthogonal to L, y_,(0). The intersection I',n L, 5_/[(0) will
be a compact variety in L, . x._.(O) whose dimension 8 we shall compute
in the next section. Let u(I', N Ly . n..(O)) be the measure of this variety as
subvariety of the Euclidean space L, y_,(0); if 8 = 0, then 1 means the
aumber of intersection points of I', and L x._(0).

Then we define the rth toulabooluoecumtureoforderqofX" <E N
as the mean value of the measures u for all L, y_(O), that is, according

to equality (19)

- 01 0. sen 0 N_'.‘
Ry = i uptiers [ on MO iy AV s (O)
@5

The coeficient of the right-hand side may be replaced by
01 0. (X33 o'..]/o‘.'.n_' ove o"u_io
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(b) Case p<r<n+N—1. Instead of the set of L, which are contained
in some T9(p) we consider now the set of L, which contain some T'9( p),
p€E X*, and are orthogonal to L, x_(O). As before we represent this set
by T', and the rth total absolute curvature of order ¢ of X*< E,_ y is
defined by the same mean value (25).

Properties
We proceed now to compute the dimension of I',n Ly, x_(0).

(a) Case 1<r<p. The set of all L, < E, _ y is the Grassman manifold
Gpi1,n+N-r Whose dimension is (r+1)(n+ N~—r). The set of all L, which
are contained in T''9(p) and pass through p is the Grassman manifold
G,,,—r of dimension r(p—r); therefore the set of all L, which are contained
in some T'?(p), pe X™, has dimension r(p—r)+n. On the other hand,
the set of all L, < E,, . x which are orthogonal to L, , ._(O) has dimension
n+ N~—r. Consequently, the intersection of both sets, as sets of points of
Gprs1,n+N-n has dimension

Hp-r)+n+n+N—=r—(r+1)(n+ N—=r) = rp+n—r(n+N).

Since to each L, orthogonal to L,,x._(O) corresponds one and only
one intersection point with this linear space, the preceding dimension
coincides with the dimension 3 of I'.nL,,y.,, that is,

Sm= dim(l‘,nL”N_,(O)) =rp+n~r(n+N).

Hence, in order that KQ(X *)%0, it is necessary and sufficient that
(26) rp+n3r(n+N).

(b) Case p&r<n+N-1. The set of all L,< E, 5 which contain a
fixed L, constitute the Grassman manifold G, , ..y, 80d therefore the
dimension of the set of all L, which contain some T'?(p), pe X'™, is
(r—p)(n+ N—r)+n. The remaining dimensions are the same as in the
case (g), so that the dimension of the set of all L, which contain some
TW(p), pe X ™, and are orthogonal to L, y_,(0), is
(r=p)(n+N-1)+n+n+N—r—(r+1)(n+ N—r) = rp+n—p(n+N),
that is, ‘ :

8 = dim(I', N Ly n_(O0)) = pr+n~p(n+ N).

In order that K{§)(X*)%0, it is necessary and sufficient that o
@ pr+n pln+N).

Of course, to inequalities (26) and (27) we must add the relations (24).
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The most interesting cases correspond to & = 0, for which the measure
p in equation (25) is a positive integer and the total absolute curvature is
invariant under similitudes. In this case the set of points pe X*® for which
L, contains or is contained in T'?(p) can be divided according to the
index of p, and we get different curvatures in the style of those defined by
Kuiper for the case g =1, r=n+N—1 [7]. We will not go into details
here.

Examples
(1) Curves, n = 1. For n = 1 the condition (26) is
13r+r(N-p)

and since p< N the only possibility is p = N, r = 1, which gives 8 = 0.
The corresponding curvature XKiX)(X?) is

@8 KD = 5= [ mdato)

where v, is the number of lines in E,,y orthogonal to Ly(0) which are
contained in some Nth tangent fibre of the curve X. Notice that Gy,
is the unit sphere T, and dL,(O) is the element of area of this sphere in
consequence of the duality (18). If e, e,, ..., ey, are the principal normals
of X! then the formula (21) says that the right-hand side of equation (28)
is equal to the length of the spherical curve ey..,(s) (s = arc length of X?)
up to the factor 1/=. That is, if xy is the Nth curvature of X? (see, for
instance, Eisenhart [4], p. 107) we have

29) KXY .;.‘r J' L Jewlas

For the case of curves in £y, N = 2, «y is the torsion of the curve and
K'Y} is up to the factor «~1, the absolute total torsion of X2,

The condition (27) gives 13 p+ p(N—r) and since r< N, this condition
implies p = 1, r = N. We have the curvature

(30) xm.(xo-a‘; jmmda(m.

where vy, is the number of hyperplanes Ly of Ey,, orthogonal to L,(0)
which contain some tangent line of X, The same formula (21) gives now
that the right-hand side of equation (30) is equal to the length of the curve
€(s) (= spherical tangential image of X'?), up to the factor 1/m. Therefore,
if x, is the first curvature of X', equation (30) becomes

an K= | _lelas
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Notice that for each direction L,(O) there are at least two hyperplanes
orthogonal to L,(0) which contain a tangent line of X? (the hyperplanes
which separate the hyperplanes which have a common point with X
from those which do not). Therefore the mean value Kf}), is >2 and
equation (31) gives the classical Fenchel inequality

(32 fx‘|x,|ds>21r.

If the curve X! has at least four hyperplanes orthogonal to an arbitrary
direction L,(O0) which contain a tangent line of X! (as it happens for
instance for knotted curves in E;), the mean value K{1\(X) will be 34,
and we have the Fary inequality

63) le,mu«.
(2) Surfaces, n = 2.

(§) Total absolute curvatures of order 1. We have n=2, pm=2 and
condition (26) becomes 23 rN. Therefore the possible cases are r = 1,
Nwl;r=m2 N=] and r=1, N= 2, For 2<r<N+1, condition (27)
gives 73> N+1 and therefore the only possible case is r = N+1.

(a) Caser = 1, N = 1. Surfaces in E;. Taking into account that G, is
the unit sphere Z,, the curvature (25) is
1
69 K = ¢ [ Aaryo)

where A is the length of the curve in the plane Ly(O) generated by the
intersections of Ly(O) with the lines of E, which are tangent to X* and
are orthogonal to Ly(0). If H denotes the mean curvature of X* and do
denotes the element of area of X3, it is known that (34) is equivalent to
the total absolute mean curvature

39 KX --;-J;’liﬂda.

(b) Case r =2, N = 1. Surface X* < E;, The Grassman manifold G,
is the unit sphere Z, and equation (25) can be written

oo K =g [ w0,

where v, is the number of planes in E, which are tangent to X'* and are
orthogonal to the line L,(0). If K denotes the Gaussian curvature of X,
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since dL,(O) is the element of area on X, it is easy to see that equation
(36) is equivalent, up to a constant factor, to the total absolute Gaussian
curvature of X3, that is,

67 2= 5 | _|Klde.

(¢) Caser =1, N = 2. Surfaces X* < E,. In this case, writing X, = unit
3-dimensional sphere, instead of G;;, we have

9) KR =355 | maryo)

where », is the number of tangent lines to X* which are orthogonal to
the hyperplane Ly(O). The properties of this total absolute curvature
seem not to be known. A geometrical interpretation was given in [10).

(d) Case r = N+1. Surfaces X3 < Ey, ,. According to (25) we have
the following curvature

(39 KRnE) = 51— [ v diy )

where vy, is the number of hyperplanes of Ey,, which are tangent to
X* and are orthogonal to the line L,(0) and Zy denotes the N-dimensional
unit sphere. Up to a constant factor this curvature coincides with the
curvature of Chern-Lashof [3). Since obviously vy,,»2 we have the
inequality K{}, » > 2, with the equality sign only if X is a convex surface
contained in a linear subspace L, of E,.

For N =2, X1 is a surface imbedded in E, and the curvature (39) is a
kind of dual of the curvature (38) (see [10]).

(i) Total absolute curvatures of order g = 2. We have n = 2,p = 5 and
the inequalities (26) and (27) say that the only possible cases are: (@) r = 1,
Numdg;(D)r=2,Nm4;(c)r=1, N=35,

(a) Case r =1, N = 4, Surface X® in E,. The Grassman manifold Gy,
is the unit sphere Z; and equation (25) can be written

(40) KR == f AdLy(0),

where A is the length of the curve in L;(O) generated by the intersections of
Ly(O) with the lines of E, which are orthogonal to Ly(0O) and belong to
some of the second tangent fibres of X3,

(b) Caser =2, N = 4, Surface X? in E;. We have
‘ O
@“n K{{(X?) = 0.0, GuV.dlq(O).
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where v, is the number of 2-spaces of E, which are orthogonal to L(0)
and are contained in some second tangent fibre of X'3.

(c) Caser =1, N =35, Surfaces X in E,.
We have

“?) KR = 5- [ waryo)

where », is the number of lines of E, which are contained in some second
tangent fibre of X'* and are orthogonal to Ly(0).

The expression of these absolute total curvatures of order 2 by means
of differential invariants of X* is not known.
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