
A GEOMETRICAL CHARACTERIZATION FOR THE AFFINE 
DIFFERENTIAL INVARIANTS OF A SPACE CURVE 

L. A. SANTALÓ 

1. Introduction. Let x ~x(s) be the vector equation of a space curve 
C with the affine arc length s as parameter. It is known that x(s) satis
fies a differential equation of the following form [l, p. 73; 3, p. 76 J1 

(1.1) *""+ **" + <»'« 0, 

where the primes represent derivatives with respect to s. The vec
tor x' is the tangent vector and the vectors xn and x,n are called the 
affine principal normal and the affine binormal, respectively, of the 
curve C at the point considered. The vectors X , X f X " ' with the 
initial point at the point x of the curve C constitute the affine funda
mental trihedral at x and they satisfy the following relation [l, p. 72; 
3, p. 78] 

(1.2) (*',*",*'") = 1. 

The plane determined by the point x and the edges x', x" of the 
affine fundamental trihedral is the osculating plane at x\ the plane 
determined by x and the edges x", xfn is the affine normal plane and 
the plane determined by x and the edges x', xnt is the affine rectifying 
plane of the curve C at the point x. 

Sometimes it is convenient to use the vector kx'/A+x'" which is 
called the binormal of Winternitz [l, p. 76]. The invariants k and t 
(functions of the affine arc length s) are called the affine curvature and 
the affine torsion respectively. 

For the affine fundamental trihedral and for k and t some geomet
rical characterizations have been given by Blaschke [l, chap. 3], 
Salkowski [3, p. 76] and Haack [2]. The purpose of the present paper 
is to give a new geometrical construction for the mentioned elements, 
which we believe is simpler than those previously obtained. 

2. Geometrical elements associated to an ordinary point of a space 
curve. Let us consider the space curve C represented by the vector 
equation x = x(s) (5 = affine arc length) in the neighborhood of the 
point ^o = ^(0). If we denote by xo(i) the derivatives d(i)x/dsi at the 
point 5 = 0, since xó, xó , #0 " are not coplanar (by (1.2)), any point y 
of the space can be expressed in the form 
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(2.1) y = %o + Zixi + fc*o" + W ' 

where £j, £2, £3 may be considered as the coordinates of the point y 
with respect to the affine fundamental trihedral. 

For the points x(s) of the curve C we have 

*(s) = x0 + sxi H s*x{' H s3*0" H s4#0'" H 

and taking into account the relation (1.1) we obtain 

(2.2) 

where k'= dk/dsy t'=dt/ds. 
Let us now consider the following geometrical elements associated 

to the curve C at the point xo: 
(a) The quadric cone K. By K we denote the quadric cone deter

mined by the tangent of C at the point x0 and the parallel lines 
through xo to the tangents of C at four neighboring points as each of 
these points independently approaches x0 along C. This quadric cone 
K has been considered by Haack [2] and its equation in terms of the 
coordinates & is [2, p. 159] 

(2.3) è+ tó-2{xfe-0. 

(b) The osculating cubical parabola Q. A twisted cubic which has the 
plane at infinity as osculating plane is called a cubical parabola. The 
parametric equations of a cubical parabola have the following form 

(2.4) fo = ai + biU + du2 + dtu
z (i = 1, 2, 3). 

In order to find the cubical parabola which has contact of the high
est order with the curve C at the point xo, let us put 

(2.5) s = u + miu2 + w>2Uz + tnzu* + • • • 

in the equations (2.2). We obtain 

£1 = u + m\u2 + m2u
z + ( m% 1] uA + • • • , 
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1 o / 1 2 1 \ 
£2 = — u2 + miu3 + lm2-\ Wi k\u4 + 

1 1 
£3 = UZ -\ MiU* + • • • . 

3! 2 

If we take the values 

1 1 
nti = 0, W2 = — k, mz = — t 

we see that the cubical parabola 

1 1 1 
(2.6) fc = u + — lu\ £2 = — u\ & = —u* 

4! 2 3! 
is the only cubical parabola which has a fourth order contact with the 
curve C a t the point #0. Consequently the equations (2.6) are the 
parametric equations of the osculating cubical parabola Q of C a t x0. 

The quadric cone K and the twisted cubic Q are affinely connected 
to the curve C a t the point x0. We shall use also the following cone K* 
which is projectively connected with C. 

(c) The osculating quadric cone K*. With K* we denote the unique 
quadric cone with its vertex at the point Xo which has seven-point 
contact with C a t the point x0. In order to find the equation of K* 
let us substitute the expansions (2.2) in the general quadratic equa
tion 

(2.7) Ai + Bi + d + DÉifc + Eta* + Ffcfc = 0 

and then, demanding that this equation be satisfied identically in 5 as 
far as the terms in s6, we find 

A = D = F = 0, 3B + IE = 0, IOC - 15kB - 3kE = 0. 

Hence, the osculating quadric cone K* is given by the equation 

(2.8) 20*2 + 21 ki - 30&& = 0. 

3. Geometrical characterization of the affine fundamental trihedral 
of a space curve at an ordinary point. From (2.6) we deduce that 
the straight line which connects the point xo of the curve C with the 
point a t infinity of the osculating cubical parabola Q a t x0 has the 
direction of the vector 

— k%{ + xo'", 
4 
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that is, coincides with the binormal of Winternitz (§1). 
The plane determined by this binormal and the tangent line of C 

at x0 is the affine rectifying plane and the polar line of this affine 
rectifying plane with respect to the cone K turns out to be the affine 
principal normal line. 

If we let £2 = 0 in the equation (2.3) we find that the intersection 
of the affine rectifying plane with the quadric cone K is composed of 
the tangent line and of the straight line given by the equations £2 = 0, 
£& —2£i = 0, that is, the line which has the direction of the vector 
k4/2+xl". 

Since the vectors x£, kx{/4:+Xo" and kx&/2+#o'"', #</" are har
monically separated it turns out that the affine binormal is the line 
harmonic conjugate to the intersection line (different from the tan
gent) of the cone K with the affine rectifying plane with respect to the 
tangent line and the binormal of Winternitz. The plane determined 
by the affine binormal and the affine principal normal is the affine 
normal plane. Thus the following theorem is established : 

At an ordinary point x0 of a space curve C let us consider the osculating 
cubical parabola Q and the cone K defined in §2. The direction of the 
point at infinity of Q gives the binormal of Winternitz of C at x<>. This 
binormal determines with the tangent line the affine rectifying plane9 

whose polar line with respect to the cone K is the affine principal normal 
of C at x0. The harmonic conjugate of the intersection line {different from 
the tangent) of K with the affine rectifying plane with respect to the pair 
formed by the tangent line and the binormal of Winternitz is the affine 
binormal line of C at XQ. 

Instead of the cone K and the cubical parabola Q in order to give 
a geometrical characterization of the affine fundamental trihedral 
connected with the space curve C a t the point x0, we can use only 
the cones K and K* (§2). For this purpose let us seek the straight line 
which passes through the point x0 and has the same polar plane with 
respect to both cones K and K*. If we use the coordinates £1, £2, £3 
of (2.1) the polar plane with respect to K of the line which connects Xo 
with the point £i°, £2°, £3° is given by the equation 

(3.1) Ùi - Ù% - (Hl - £Î)É3 = 0 

and the polar plane of the same line with respect to the cone K* is 

(3.2) 15&1 - 20&« - (21«! - 1 5 $ & - 0. 

In order that the planes (3.1) and (3.2) coincide, we must have 
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either ^20 = 3̂° = 0 or Ji0 = ^3°=::0. The first solution corresponds to the 
tangent line whose common polar plane with respect to the cones K 
and K* is the osculating plane. The second solution corresponds to 
the affine principal normal whose polar plane with respect to the cones 
K and K* is the affine rectifying plane. Then, upon excluding the 
tangent line, the affine principal normal is the only line which has the 
same polar plane with respect to the quadric cones K and K*. 

We have seen that the affine rectifying plane intersects the cone K> 
excluding the tangent line, in the line R of the vector kx£/2+x£". 
Analogously we find that the affine rectifying plane intersects the 
cone K* besides the tangent in the line R* of the vector 7kxó +10#o ' ' . 
Consequently the cross ratio of the tangent T> affine binormal B and 
the lines R and i?* has the value 

/ 1 7 \ 7 
X = (TBRR*) = I 00,0,— k, — k) - y • 

Thus we have obtained : 

Let K and K* be the quadric cones attached to the space curve C at the 
point Xo defined in §2. The affine principal normal of C at xo is the 
only line which has the same polar plane with respect to both cones K and 
K* ; its common polar plane is the affine rectifying plane. Let R and R* 
be the intersection lines, the tangents excluded, of the rectifying plane with 
the cones K and K* respectively ; the affine binormal is the line B such 
that the cross ratio (TBRR*) has the value 7/5. 

4. Geometrical interpretation of the affine curvature. If we sub
stitute the expressions (2.6) in (2.3) we find that the cubical parabola 
Q has with the cone K four coincident points in x0 and two other 
intersection points corresponding to the values of u satisfying the 
equation 

(4.1) ku2 = 6. 

Let us put 

(4.2) M1 = ( T ) , * - - ( T ) 

The corresponding intersection points of Q with K will be the points 

k l / 2 

/ 1 3 1 2 1 3\ 
(4.3) AA$i = Ui + — kuh & * — Ui, & = — UiJ (i ** 1, 2). 

The straight line which connects Ai and A2 cuts the osculating 
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plane in the point ^1 = 3̂ = 0, £2 = 3e"""1. That gives the following new-
characterization of the affine principal normal: the affine principal 
normal is the line which connects the point Xo of the curve with the 
intersection point of the osculating plane with the straight line A\Ai. 

The osculating plane of Q at Ai, taking into account (4.1), is 

(4.4) 6u£i - 12u£2 + 3£8 - lu] = 0 

and it cuts the edges of the affine fundamental trihedral in the follow
ing points 

1 1 2 2 3 
y 1 = #0 H UiXo, y2 = #o Ui%l ' , 3/3 = Xo H UiXj". 

3 6 3 
The absolute value of the volume of the tetrahedron whose vertices 

are the points x0i yi, y2, yz, taking into account (4.1) and (1.2), is 

1 4 
(4.5) V = — (yi - xo, y* - xo, y* — x0) = — k~z. 

0 3 

Then we have the theorem : 

Let us consider the points Ai (i = l, 2) in which the osculating cubical 
parabola Q intersects the cone K. The osculating plane of Q at any one 
of the points Ai determines with the affine fundamental trihedral a tetra
hedron whose volume V is related to the affine curvature k by (4.5). 

5. Geometrical interpretation of the affine torsion. We now give 
a geometrical interpretation of the affine torsion /. For this purpose 
let us seek the intersection line of two consecutive affine normal 
planes. The vector equation of the affine normal plane of C a t x0 is 

(5.1) y(X, /x) = *o + A*o" + /**o'" 

and the analogous equation for the affine normal plane at the point 
x(s), taking into account the relation (1.1), takes the form 

y(X, p) = x(s) + %x"(s) + jxx'"(s) 

= xo + | ( 1 - tjx)s (& + fp)s* H 1 xi 

(5.2) + |X - kjls + — (1 - k\ - (k' + t)jï)s2 + • • - 1 xi' 

+ J p + Is kfis2 + • • • 1 xo'". 
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In order to find the intersection line of the planes (5.1) and (5.2) 
we must write 

1 - tfx (& + t'ö)s H = 0 , 

X - kps + — (1 - fcX - (k' + f)[x)s2 + X, 

jx +Xs kpis2 + 
2 

and by elimination of X and fl we find 

(1 - fit) + — (\t + »t')s + = 0. 

= M 

For 5 = 0 we have /z = l/£; hence the intersection line of two con
secutive affine normal planes is the line yÇK) =#o+X#o// +tr1xi ' . 
Then, the intersection point of the affine binormal at the point #0 
with the consecutive affine normal plane or, what is the same, the in
tersection point of the affine binormal with the developable surface 
enveloped by the affine normal planes, is the point B=x0+t~'1xou. 

Let us now trace through the point B the parallel line to the tangent 
of Cat the point x0; if we call E its intersection point with the quadric 
cone K we find that it is 

E s #o H— krxxi + trxx& . 

Taking into account (1.2) for the volume of the tetrahedron whose 
vertices are the points x0, B, A\ (or A2) and E we have the expression 

y* — 
6 

where the values of & (i = 1, 2, 3) are given by (4.3) and (4.2). Conse
quently we have 

(5.3) 7* = — r 2 . 
4 

Hence we have obtained the following geometrical interpretation 
for the affine torsion / of a space curve : 
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Through the intersection point B of the affine binormal at the point XQ 
of a space curve C with the developable surface enveloped by the affine 
normal planes} we trace the parallel line to the tangent of C at x0. Let 
E be the point in which this parallel line intersects the quadric cone K. 
If Ai is any one of the points in which the osculating cubical parabola 
Q intersects the cone Kf the volume of the tetrahedron whose vertices are 
the points x0, B, Ai, E is related to the affine torsion of C at Xo by the 
relation (5.3). 
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